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STATISTICAL MECHANICS

CHAFTER 1

GAS THEORY

(a) Introduetiogu (b) A Simplified Modd of tbe Perfeet Qu. (e) The

Number of Moleeulm with a Given Veloeity. (d) The Qaaneal Fhrfect

Gae, neeiuie. (e) The Maxwdb-Bdtimann Didribntion Law. (f) The

Average Veloeity. (g) TheNumber of Moleenlee Hitting a Wall Qi}The

Mean Ftee Path, (i) Yiaeoaity. Q) Heat Conduetion. (k) IMuaion.

(1) The Soqie of Statistical Meehanioa.

It. IntcodttctioB

In the theoiy of mechanics, which treats the motions of bodies sub-

jected to known forces, there enter certain quantities known as integrab

of the equations of ihoticm. These mtegrals an the quantities which

remain constant in an isolated gystem conosting oi bo^es upon which

no forces an exerted from outtide the i^rstem itseilf. The most impor-

tant of these integrals is called the energy.

For most simple ideal mechanical systems the eaetgy falls naturally

into two additive terms. One of these, the kinetic energy or vm viva,

is the sum or mtegral over the system of one-half the product of the

mass by the linear velocity squand. The other, the potential energy,

is a function of the position of the parts of the system alone, and inde-

pendent of the velocities. From these characteristics of the equations

d motirm one becomes accustomed to thinking of energy as a quantity

easting in two forms, kinetic and potential, readily convertible into

each other, and actually chanpng from one form into the other during

the motion of the systm.

However, this simple idealisation of the laws of mechanics is never

found to apply exactly to the motions d macroscoine bodies. It is

always necessary, in order to obtain exact agreement vtith experiment,

to introduce into the theoretical descriptimr certain fricti<mal forces,

which have the property of reducing the kinetio energy of the system,

without a corre^nding increase in the potential. It is true that in

many almost ideal systons these friction^ forces are practically neg-

1



GAS THEORY2 [Sec. la

ligible, as in the motion of the solar system, but in others they assume

extreme importance.

The investigations of Rumford, in the eighteenth century, followed

by the considerations of Mayer, Joule, and others, showed that the

decrease in the mechanical energy of the system through frictional

forces is always accompanied by a rise in temperature of the system, or

of parts of the system. A new quantity, foreign to mechanics, called

heat, may be introduced, and defined in such a way that the heat pro-

duced in the system is always equal to the mechanical energy lost

through friction. By this inclusion of heat as a third form of energy,

the mechanical statement that the energy of an isolated system remains

constant with time retains its validity, and in this form the law of con-

servation of energy is known as the first law of thermodynamics.

Observations made by Brown in 1827 on particles of microscopic

size suspended in solution showed that these are in a state of continual

random motion, which suggested that the invisible atoms and molecules

making up matter in bulk are not at rest. It is immediately obvious

that, if this motion is real, the system of atoms and molecules composing

bulk matter has associated with it energy, in the form of kinetic and

potential mechanical energy, not different in kind from that associated

with a macroscopic system.

The assumption that the mysterious disappearance of mechanical

energy of a macroscopic system into the heat of its component parts,

due to frictional forces, is merely the conversion of macroscopic mechan-

ical energy into the submicroscopic mechanical energy of the atoms and

molecules, is known as the kinetic hypothesis. In this theory heat is

no longer essentially distinct in kind from mechanical energy. The
theory has been amply confirmed by the remarkable accuracy with

which the properties of bulk matter can be predicted by its use.

This is then the fundamental step of the kinetic thcjory: to identify

heat with the mechanical energy of the molecules. The motion of these

molecules and their constituent parts may be expected to be governed

by the laws of mechanics. However, it has been found that the equa-

tions of classical mechanics are asymptotic approximations, valid only

for large systems, to the more universal equations which make up what
is called quantum mechanics. With this enlargement of the meaning
of the word mechanics to the quantum-mechanical laws for systems of

atomic size, the motion of the constituents of bulk matter is actually

governed by the laws of mechanics. The laws which bulk matter is

known to obey, the laws of thermodynamics and of physical chem-
istry, are then presumably consequences of the laws of mechanics. The
methods by which these laws can be derived, and by which their numer-
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ical constants can be calculated from the mechanical properties of the

molecules, form the science of statistical mechanics.

The problem appears at first to be somewhat hopeless of solution.

The strict equations of mechanics are difficult to solve for systems

consisting of more than two particles. How can one expect to draw

any conclusions from the application of these equations to systems com-

posed of 10^3 particles? The very complexity of the problem is the

secret of its solution. The details of the mechanical motion of the

atoms within a system are unimportant for the calculation of the over-

all behavior of the system, which determines its macroscopic proper-

ties. Certain averages of the system's characteristics can be calculated

from the mechanical laws governing the motion of its parts, and it is

these averages which are actually observed. In most actual problems

an essential simplification is gained from the fact that there are but a

few different kinds of constituent molecules, although the number of

each kind may be enormous.

In this chapter a rather simple example, that of the perfect monatomic

gas, will be used to illustrate the possibilities of statistical methods.

lb. A Simplified Model of the Perfect Gas
One of the simplest cases, for which very elementary considerations

lead to rather valuable conclusions, is that of the perfect monatomic

gas. A dilute gas at rather high temperature consists of individual

molecules which jjossess kinetic energy of motion, but which, on the

average, are no far away from each other that they exert negligible

forces on each other. Stated somewhat more specifically, only a very

small fraction of all the possible instantaneous positions of all the mole-

cules correspond to a total potential energy which is not infinitesimally

small compared with the total kinetic energy of the system.

If the gas is monatomic it is known from experience that at ordinary

temperature the molecules possess no appreciable internal energy. In

C-'hapter 6 it will be found that this behavior is to be expected, and
certain possible exceptions will be noted. For the normal dilute mona-
tomic gas the only important part of the total energy is the kinetic

energy of translation of the atoms.

We shall attempt to predict the properties of an idealized system
consisting of N identical point particles, each of mass m, exerting no
forces on each other, and contained in a vessel of volume F, the walls

of which retlect the striking molecules perfectly. N will be assumed to

be a very large number. Since no forces are operative the potential

energy must be independent of the positions of the particles, and will

be chosen as zero. The total energy E of the system will be the kinetic
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energy, the sum of \nw^ for all the particles. The properties of such a
system may be expected to be very close to those of a dilute monatomic
gas of an element of atomic weight JYow, in which No is Avogadro’s

number.

In section Id, the properties of this system will be calculated without

the introduction of any unnatural assumptions concerning the further

characteristics of the molecules, but in this section the calculation will

be carried out with the use of two entirely improbable assumptions.

It will be assumed, namely, that all the N molecules have exactly the

same magnitude of velocity v, and that they move only in the directions

of the three principal Cartesian axes, one-sixth of the molecules moving
in the positive direction, and one-sixth in the negative direction, of each

axis. If a molecule hits one of the walls, which are taken to be parallel

to the coordinate planes, its velocity changes sign. It so happens that

the equations derived under these assumptions are the correct ones,

and since the method of derivation is illustrative of the more exact one

to come it appears to be excusable to use these assumptions for pre-

liminary considerations.

The pressure exerted on a wall of the vessel is the force exerted normal

to the wall per unit area. This force arises from, and is equal and oppo-

site to, the change in momentum per second suffered by the molecules

which are reflected from the w^all. If one considers 1 cm,^ of wall per-

pendicular to the X axis it is clear that thLs section of the wall wdll be

struck in 1 sec. only by the molecules moving toward the wall along

the X axis, and lying, at the beginning of the second, in a rectangular

parallelepiped of length v along the x axis, and with a cross-sectional

area 1 cm.^. If the density of molecules in all parts of the S3r8tem is

uniformly N/V, the number hitting the wall per square centimeter per

second will be vN/&V, Each molecule striking has a mom(*ntum mv
normal to the w^all, and, if the molecules are reflected after striking, the

change of momentum per molecule will be 2mv, The total change of

momentum per square centimeter per second is the pressure,

(1. I) PI- - iNdrni^) - JP,

since the total energy E is The pressure-volume product, PV,
is a constant for constant energy of the system, and proportional to the

total energy.

We should prefer, how ever, to relate the pressure-volume product to

the rnort* easily measured variable T, the temperature of the system,
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rather than to the total energy. Here a difficulty is encountered which

is not connected with the particular S3rstem, but rather with the essen-

tially complicated nature of the. function T. It will later be shown that

two such systems as this, if brought into thermal contact so that energy

can flow from one of them to the other, will come into equilibrium in

such a way that the average kinetic energy per molecule is equal in the

two systems. The qualitative definition of temperature is that it be

equal in two systems which are in thermal equilibrium, and that it be

higher in the system from which the energy flows than in the system

which gains in energy if the two systems arc brought into thermal con-

tact. It follows that the energy per molecule, 6 = E/N^ is a monot-

onous function of the temperature alone.

Anticipating this result of later considerations, one sees from equa-

tion (1) that the pressure-volume product can be written

PV - Nf{T),

in which f(T) is a monotonously increasing function of the temper-

ature. Until some more specific definition of the temperature is avail-

able one can proceed no further.

Actually, however, the temperature T has first been defined by just

this equation, namely, by setting /(T) = hT, where k = ft/iVo is the

gas constant per molecule, usually called the Boltzmann constant.

Its numerical value is fc = l.«3804 X 10*“^® erg • dcg.""^. The definition

of temperature is made by means of the i>erfect gas equation,

( 1 . 2) PV = ^RT^NkT.
No

By combining (1) and (2), a relationship between the kinetic energy

per molecule and the temperature is found

(1. 3) = ffcr.

The equations of this section will be derived in section Id in an exact

and only slightly more complicated manner. Before doing this it is

neceasary to define and discuss a quantity based on an extremely useful

concept frequently met in statistical mechanics.

Ic. The Number of Molecules with a Given Velocity

If an attempt is made to determine, in a gas, the total number, or

fraction, of all the molecules which have a certain vectorial velocity 7,
defined by the three components Vx, Vy, Vg, in the x, y, and z directions,

respectively, the necessity of a careful definition of the term is imme-
diately faced. Obviously, the more accurately the velocities of the
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molecules are measured, the fewer will be found to have the prescribed

values of the velocity components.

The diflSculty is obviated by defining the quantity N{1^) «
N{vx,Vy,Vg) in such a way that N(vx,Vy,Vg) dvx dvy dvg is the total number
of molecules having velocity components lying l^tween v* and Vx + dvxf

Vy and Vy + dvy, Vg and + dvg, N(vx,VyfVg) may then be termed the

number of molecules having the velocity Vx, Vy, Vg, per unit volume in

the three-^iimensional space of the velocities. If dvg dvy dvg were chosen

so small that the velocities of only a few molecules lie in the corre-

sponding range, N (Vx,Vy,Vg) would vary erratically in adjoining regions.

If the regions dvx dvy dvg are, however, chosen large enough to contain

very many molecules, N{'7) becomes a well-defined function, namely,

the density of particles in the velocity space. Owing to the extremely

large number of molecules in real systems, regions which are physically

very small still contain large numbers of particles, so that no difficulty

is encountered in treating N(vx,Vy,Vg) as a continuous function of its

arguments. If we treat NiT) as a function w'hich is independent of

time, we wish it to signify the average density of particles in the velocity

space. At a given instant deviations from this average density may be

observed, but owing to the tremendous number of molecules in a real

gas the fractio7ial deviations will be very small.

It will be convenient to define

(1-4) = / N (tu,Vy,Vx) dv„
«/ —00

/
+00 ^+ 0^ ^+ 00

N (Vx,1>y) dVy = I I
N {Vx,Vy,Vt) dVy dv„

00 •'-00 «'-oc

so that N{Vx) dvx is the total number of molecules having x components
of velocity between the values Vx aud Vx + dvx, irrespective of the values
of the components in the y and z directions. The total number of mole-
cules N must be given by

(1. 5)

N
t/X dVy

1^+00 ^i-oo

N{l>x)dVx= / / N{Vx,Vy)dVx
-00 *^-00 •'-00

^+00 y^-foo ^ + 00

= / / / N(vx,Vy,Vx) dvxdvydvx.
•'-00 •'-00 •'-GO

One also linds use for another quantity, N (v) or defined by the
statement that Niv) dv is the total number of molecules having
magnitudes of velocity between v and v + dv. The scalar magnitude
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V must be equal to or greater than zero, in contradistinction to Vx, Vy,

and Vm 9
which may be negative. Also

(1. 6) f N(v) dv = N.

The area of the surface of a sphere of radius v is The volume
in the velocity space corresponding to the range of scalar magnitude
from vtov + dvis therefore diK

If the gas is isotropic, that is, if all properties of the gas, including the

distribution* of molecules in the various velocity ranges, are the same
for all directions, it follows that

Nit) - Ar(t?), if \ir\ =

(1. 7) N(v) = WiV(7), if r =

The calculation of quantities of the nature of NiV) and N(v) under

conditions of equilibrium in the system is one of the important tasks of

statistical mechanics.

The value of a knowledge of the depend(*nce of such a quantity, say

N(v)j upon its variable, may be illustrated by showing one of its uses.

Suppose that the average value of the kinetic energy of the molecules

composing the gas is sought. The kinetic energy of one molecule is

^mv^. If this is multiplied by the number of molecules N' (r) dv having

the velocity magnitude t', and then summed, by means of integration,

over all velocity ranges, the total kinetic energy, E, is obtained as

The average kinetic energy per molecule is the total kinetic energy

divided by the total number of molecules, N. If the average kinetic

energy is denoted by we have

(1. 9)

In general, if f{v) is any function of the magnitude of velocity of a

single molecule (in the special case just considered /(w) = then

the average value of this function, /(a), will be given by

(1 . 10) m =

* In general, unless the contrary is explicitly stated, the small effect of the gravi-

tational gradient in making the vertical direction unique will be neglected.
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If f(vt,Vy,v,) is a function of the three components of the velodty vector

its average value is given by

————— 1

(1. 10') ^J J J
J(vx,Vy,Vt)N(v,,Vy,v,)dvsdoydv,.

In the special case that/ depends only on the combination (»^ + ej + 1^),

that 13,
onlyon the magnitude of velocity v, the integration over the direc-

tions of the velocity vector in (lO') may be performed immediately;

(10') then reduces to (10).

Equations (10) and (10') may be regarded as definitions of the

average value of a function. They represent the sum of the values of

the function for all molecules, divided by the total number of molecules.

Id. The Classical Perfect Gas, Pressure

The system consisting of N identical, independent, point mass par-

ticles in a volume V will again be considered in this section. The
unnatural assumption of equal velocities and of orJy six directions of

motion will not be made, but the justifiable assumption of equation

(7), that the gas is completely isotropic, will be kept.

Lei us again calculate the pressure due to the collisions of the par-

ticles on the walls. Tlie pressure is equal to the change izi momentum
per second of the particles hitting unit area of wall. The element of

wall considered will be chosen normal to the x axis, and of area 1 cm.*.

In general it would be unjustifiable to assume that every particle of

velocity r,, Vy, c, hitting the w all w^as pt'rfectly reflected, and loft witli the

velocity — v*, Vy, Vg, However, since isotropy has been assumed, and
therefore in the assumed stationary state NiVx,Vy,Vg) = A’ (—

it follows that just as many molecules leave the wall with the velocity

— Cx, Cy, r, as hit with the velocity !?«, and the total change of

momentum per second experienced by the molecules due to collision

with the wall will be the same as if the molecules were perfectly reflected.

One may, therefore, without loss of generality, calculate the total

change of momentum per square centimeter r>er second as being the
product 2mVx times the number of molecules of velocity component
hitting 1 cm.* of wall normal to the x axis, per second, summed by inte-

gration over all values of r* from zero to infinity.

A figure including all the vectors ~v with given components Cy, Vg,

wiiose (md points fall in the square centimeter of wall normal to the
X axis, is a parallelepiped of base 1 cm.* and heiglit the volume of
which is Vx cm.*; see Fig. 1.1. All the VxN(7)/F molecules of velocity
"v wiiich are in this figure at any moment will strike the square centimeter
of wall within the ensuing second. Integration over all values of Cy, tg,
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equation (4), gives [VxN{vx)/V]dvx as the number of molecules of x

components of velocity between r* and v* + dv* striking 1 cm.* of wall

normal to the x a?ds per second. Multiplication of this by 2mr*, the

change of momentum i>er molecule, and integration, gives for the total

change of momentum per square centimeter per second, equal to the

pressure Py

( 1 . 11 )

Since N{vx) = — the integration from zero to infinity is equal

to just half the integral from minus infinity to plus infinity. In view

of (lOO, one obtains

(1. 12) PV =

where is the average value of Since isotropy has been assumed,

= t?, and their sum is v^, so that = ^3, and

(1. 13) PV = = ^E.

As before, the pressure-volume product is found to be two-thirds of the

total kinetic energy of the system.

Comparison of (13) with the perfect gas equation, (2), shows that

(1. 14) - |*-r, E « fiVfcr,

which is similar to (3) except that now the average kinetic energy per

molecule is used instead of assuming that the kinetic energy is the same

for all molecules.
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le. The Maxwell-Boltzmann Distribution Law
It is interesting to study more closely the distribution of molecules

over the velocity ranges, that is, the functional dependence of N (vx,Vj„Vz)

on its arguments. In this section, two proofs of the Maxwell-Boltzmann

distribution law will be given.

The first derivation, published originally by Maxwell in his first

paper on the subject, does not consider the mechanism of collisions

between the molecules. This proof, however, is not rigorous, since

it is based on an assumption which should first be proved. Maxwell

assumed that the distributions of the molecules among the components

of velocity in the direction of the three coordinate axes are independent

of each other; in other words, the probability that the x component of

the velocity has the value is not influenced by the components in the

other two directions. The number of molecules, A'CiT), of the velocity

iT, can then be expressed as a product of three functions of v*, Vy, and Vg,

alone. Since the space is assumed to be isotropic these three functions

must be the same, and, moreover, N(~v) can depend only on the magni-

tude of velocity, or if wc wish to write it so, on the square of the mag-
nitude, vl + I’J +
These two conditions lead to the relation that

(1. 15) Nit) = f(vx) -/(r,) ./(t’J = F{v^),

If Vz = Vy = 0, then and if the symbol a is used for the value

of / when its argument is zero, a = /(O),

or, by insertion into (15),

(1. 16) = a-<^F{vl) F(vl) F{vl).

This functional relationship (16) is satisfied only if F is of the form
T’jj show this, equation (16) may be transfonnod into a dif-

ferential equation by differentiating both sides with respect to rj, and
then setting Vy = c, = 0. Tlie symbol a is defined by

(1. 17)

Since F(0) is a®, one obtains

(1. 18)

or

dF(ii)

a (4)

(1. 19) F(t^) = iV(7) =
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The value of the parameters A and a can be determined from the total

number of particles N and the total kinetic energy E of the system.

Before doing this we shall derive (19) rigorously without making the
assumption that the distribution of the molecules among the com-
ponents of the velocity is independent.

In order to do this it will be necessary to consider the collisions

between the molecules in the system. In order to have collisions by
which kinetic energy can be transferred from one molecule to another

it must be assumed that there are forces oi>erative in the system. The
magnitude of the forces, or the laws governing them, need not be known,
but it is essential that they be negligibly small excei)t at distances of

approach between the molecules which are very small compared to the

average distances betw^'cn them. Only under this condition is the

potential energy negligible for all probable positions of the molecules in

the system. Stated differently, it is important that at any instant an

infinitesimal fraction of the molecules are in the process of undergoing

a collision.

(V)nsider one particular type of collision process, and its reverse,

namely, the proc(\ss by which particles of the vectorial velocities V and

tt collide, and emerge with the velocities and t?', respectively. Since

the sum of the kinetic energies of the particles must remain unchanged

in the collision, the condition

(1. 20) 4- = f'2 + w'2

must be fulfilled

The total number of times that this proce.ss occurs in a second will be

called the rate of the process, and must be proportional to the number of

particles of velocity 7 and i?present, that is, to the product A" (p*) -Niu),

The rate of the reverse process in which particles of velocities and

emerge with velocities 7 and u has to be proportional to A(V^) •N (u')*

At equilibrium the rat(*s of the two processes arc equal.* We shall

show that the proportionality constants entering into the two rates are

also identical, from which the relation

(1. 21) NCv) • .V(T?) = NCv') • N(u')

between the equilibrium numbers of molecules of velocities ii*, u, v" and

u' results. The only solution of (21) with (20) is (19).

That the proportionality constants of the two rates in question must

be equal, if the two particles are unaffected during the course of the

• We are assuming complete reversibility, namely, that at equilibrium the rate

of any process and that of its inverse are equal. The fact that this is generally true

is discussed at the end of section 2i.
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collision by the walls or by the other particles of the system, may be

demonstrated in the following manner. Take the point of view of an

observer moving with the velocity of the center of gravity of the two

particles, namely, i ( tT+ 1?) =|( u') (conservation of momentum;
see Fig. J. 2). To this obser\'erthe two processes, one which converts

velocities ti* and u into T*' and

t?', and the other which converts

7' and u' into 7 and t?, are

exactly similar. In both cases

twomoleculesmoving with equal

and opposite velocities of mag-
nitude 51(7— 1?) I

= II
(7'— u')l

approach, collide, and leave

each other with velocities again

oj)positely directed, and of the

original magnitude. The angles

by which the particles are de-

flected are the same for both

particles and for the two proc-

esses. There is no conceivable

cause, other than the effect of

the other particles or the walls

of the system,* which could

make the two ab-solutc rate constants differ. Equation (21) is thereby

proved.

The functional relationship (21), together with (20), has (19) as its

only solution. This can be shown by taking the special case that
7' = 0, for which -b Since the space is isotropic, so that

A’^(7) can depend only on the magnitude, and not on the direction, of

7, one may, as before, write jV(7) = F(i/^), obtaining

(I. 22) F(0) • F(t;2 + u^) = F(y^) • F(/7).

This equation has es.sentially the same nature as (16), and may also be

transformed into the differential equation (18) by differentiation with

resjiect to and subsequent choice of w = 0.

It is readily seen that collisions between more than two particles do
not change this result.

The number N (v) of molecules with magnitude of velocity t‘, from

• The influence of the distribution of the other molecules in the velocity space is

the cause of the difference between the results of this consideration and that of

Chapter 5 iu which quantum mechanics is employed.

Ties. 1. 2. Reprc.scntation of the velocity

vectors in two-dimensional velocity space,

before and after a collision bc^tween two
particles of equal mass.
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(7) and (19), is seen to take the form

(1. 23) N{v) = WJVCtT) = 4TAt;*e-^**.

The two constants A and a are calculated from the total number of

molecules N, and the total kinetic energy E, which is related to the

temperature by (13) and (14). In performing these operations two

J

f%CC pOO

y
2g-oi;2

I
^,4g-Qv2 encountered. The

0 •'0

transformation to the new variable z = av^, dz = 2oto dv, leads to the

forms

v^e dv =
JL

dv —
2

2’ '2c-* dz =

^3/2^ z ^

2
4a'

1/2

-- f’^Y

f2

The values of integrals of this sort are tal>ulaled in the Appendix, Ail.

The condition

lead^ to

or, with 0-3),

(1. 2ri)

I'lie paranujter a is necessarily ptjsitive, fi>r otherwise the integration

of equation (24) could not have been j>erformed. Indeed, a formula

jiredictiug an infinite number of molecules with infinite velocities is

obviously nonsensical. For the evaluation of a the total kinetic energy

is calculated by the use- of (8), and compared with (14) which equates

the average kinetic energy per molecule to ZkT/2. The steps are:

X
oo 1 /•* 3mA’’
-mv^N(v) dv = 2miN J dv = ——

i
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and combining the above with (14),

E = ^NkT
3tnN

4a
’

(1. 27)
m
2kT

With this value of a the final form of the Maxwell-Boltzmaiin distri-

bution law is

(

m

(

m

The quantity in the exponent, niv^f2kTf is the kinetic energy of the

molecule divided by kT, It will be found, in general, that, in dealing

with molecules having internal energy, the exponential of the energy

divided by kT always occurs in the expression for the distribution of

molecules with respect to the ener^.

If the gas as a whole moves with respec^t to the observer, that is, if the

gas is streaming with the velocity iT, the velocities “v of the individual

particles will he distributed randomly about this prevalent velocity.

In this ease equation (28) has the form

(

3/2 ^ ^

It is readily seen that then the average value of 7 is equal to it.

If. The Average Velocity

Average values of functions of the velocitj' vector, or of the velocity

magnitude, may be found with the aid of the functions (28) and (29).

The function NCv) = N{vx,v„,Vf), (28), is plotted in Fig. 1. 3 against

the magnitude of the velocity. The function has a maximum at

Vx — Vy — V, = 0. If Vy and r, are kept constant and -V(o*) is plotted

as a function of i»*, the resulting curve is proportional to the curve of

N( F) plotted against v, is symmetrical in +»* and — 1>*, decreasing from
a maximum at r* = 0 exponentially to zero on both sides. From this

fact it is immediately obvious that the average value of »*, namely,

_ 1

^J VxN {Vx,Vy,Vx) do, doy do, = 0,(1. 30)
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0.0

since the integrand is positive

for positive values of Vg, and
antisymmetrically negative

for negative values of this

variable. Indeed, the aver-

age value of any odd power

of Vg vanishes. The average

value of the velocity vector v*

is therefore V* = 0, This fact

is inherent in the assumption

of isotropy, the assumption

of equation (7) that no pref-

erential direction exists.

The nature of the func- pia. i, 3,

tiou N(v), (29), is quite

different. This function is

defin(‘d only for positive

values of v, the magnitude

of velocity. It, also, is plot-

ted in Fig. 1. 3. It rises

from 0 at t; = 0 to a maxi-

mum at » Vfny and goc‘s

asymptotically to zero as v

goes to infinity. The veloc

0.5

1.0

0.9

0.8

X
\

ft •? \/ \, (¥)'*
0.6

0.5

Y v(t.)

—

A \

ft A > ' \ \
0.3 / y \
0.2 / 2r

\ \
ft 1

m f 1

w.l

0.0z_
1.0

,
1.5 2.0 2.5

(iwr
Maxwell-Boltzinann Distribution

.

Plot of

m

and

mtV^kT

N\ rn /
against

1/2

\2krJ
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^ ^ /2ifcr\v* / w V' ^ 1
ity which corresixinds to

|
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the maximum, v^, is the

most probable velocity magnitude, or briefly, the most probable velocity.

Its value is determined by the condition that

or

(1. 31)

The kinetic energy corresponding to the most probable velocity is kT,

The function N (v), (29), may be used to calculate the average of any

power of the magnitude of velocity. It is to be noted that the j^th root

of the average of the i»th power of the velocity is not the same as the
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average velocity, v. For the average velocity,

’-hr r *

(1. 32) Am/ \ m /

is obtained. The average of tlio velocity squared is

1
/»oo A /2kT\ I

3 /2m
"2^ m /

The root mean square velocity is the square root of this:

(r(f (“T-
These various averages of the velocity are all proportional to {2kT/m) *

but differ from each other, and from the most probable velocity in

numerical factors, not greatly different from unity. The {v + l)th

root of the average of the {y + l)th power of the velocity is alw^ays

greater than the rth root of the average of the Hh pow-er. In calcula-

tions into which averages of the velocity enter, care must be taken

that the correct average is used. In general, the average value of any
function /(v) of the velocity is given by the integral J"f(v)N(v) dv,

equation (10); if the average of a function involving the vth powder of

the velocity is sought, the average of this vth pow^er, and nof the vth

power of the average velocity, must be taken. For instance, it is the

root mean square velocity, (34), which gives the correct value of the

average kinetic energy. Of course, the average velocity square, (33),

may j^st a^well^e calculated from iV {vx^Vy^Vg) by v* =
,
or,

since
J
= vjf, simply as = 3i^.

The numerical values of these average velocities are surprisingly
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high. One finds, for instance, that the average velocity, P, is 1750

meters per second for H2 at 273^K., and 425 meters per second for O2 at

the same temperature. These high velocities were once regarded as

a severe objection to the theory, since they had to be reconciled with

the observed low diffusion velocities. However, these velocities are

completely random in direction. A molecule makes frecpient collisions

with others, so that the macroscopic velocity with which it progresses

through the gas is very much smaller. The theory of the mean free

path, defined in section Ih, is able to predict the correct diffusion veloci-

ties (see sections Ih, i, j, and k).

Ig. The Number of Molecules Hitting a Wall

For the calculation of the pressure in section Id it was found that the

number of molecules with x component of velocity betwetm and

Vx + dvx striking unit surface of a wall which is normal to the x axis

is [vxiV(t;j)/V] dvx per second. The total number Z of molecules strik-

ing the wall per square centimeter per second is, then,

(1. 35) Z = dv,.

or, from the expression (4) defining the function and from

(28) giving N{vx,Vy,v^),

N / m
(1.36) J J J

w^here the integration over dvy and dv^ is extended from minus to plus

infinity, but that over dv^ from only zero to plus infinity.

The transformation to new variables, f = {m/2kT)^^^Vy, and an

analogously defined variable in place of a, changes the integral over
^00

dVy and dvg to the product of two integrals of the type / c/f

,

t/_oo

each of which has the value Changing to a: = 7wi’^/2A;r,

dx = {mVx/kT) dv^ transforms the integral over dv^ into an integral of

the type / e"® dx, which has the value unity. One then obtains for Z,
Jo

iv 1 / fr^V'T
V T\2wm) [_«/. oQ

(1. 37)
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The use of the perfect gas equation (2), that PV = JVfcT, so that

N/V = PIkTf enables one to express Z in terms of the pressure, instead

of the number of molecules per unit volume, N/V,

(1. 38) Z -
{2innkT)^^^

This, then, is the expression for the number of molecules, Z, striking a

square centimeter of wall per second.

Numerical evaluation of the constants leads to

(1. 39) 2 = 3.537 X 10^=*7^,2' cm.

in which Pmm. w the pressure expressed in millimeters of mercury, and
M is the molecular weight of the gas.

The quantity Z is also the number of molecules escaping per seebnd

per square centimeter of hole into a vacuum, provided that the pres-

sure is sufficiently low, so that the mean free path of the mol('cules is

larger than the diameter of the hole.

It is seen from equation (39) that in hydrogen, of molecular weight

M = 2, at 1 atmosphere pressure, P = 760 mm., and at room temper-

ature, T = 300°K., Z has the value 1.1 X 10^^ sec.""^ cm.“^. The
number of molecules hitting a square centimeter of wall per second

corresponds to approximately 1.8 moles of gas.

Ih. The Mean Free Path
The average distance traveled by a molecule between collisions can-

not be so clearly defined, or so unambiguously measured, as the pres-

sure and average energy.

For a rough calculation we shall assume the molecules to act as rigid

spheres. Two molecules of diameters di and d2 ,
respectively, collide

when the distance between their centers becomes equal to the sum of

their radii, ^{di + ^2 ). In considering the collisions which one speci-

fied molecule of diameter di undergoes we may therefore treat that mole-
cule as a i)oint particle, whereas the others are treated as having their

diameter increased by di, that is, the molecule n as having the diam-
eter di + dn.

Assume the molecule in question, of diameter di, moving in the
X direction, to be shot into a gas consisting of molecules of diameter d2 .

Each of the gas molecules presents to the approaching one a target of
diameter dj -f- d2 , and of area v(di + d2)V'l- The numbtir of such
targets in a plate normal to the x direction, of unit area and thickness
Az, is (N2/V) Az, where iV2 denotes the number of molecules of kind 2
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in the system, and V the total volume. The total area covered by these

targets, neglectii^ posable overlapping, is [ir(di + d2)^N2/4.V] Ax.

The probability that the incoming particle makes a collision in travers-

ing the distance Ax is, then, the mtio of the surface covered by the

targets to the total surface, namely,

7 (di + da)*^ Ax.
4 V

The quantity

(1. 40) 2 = !•
4 V I

having the dimension of a reciprocal length, will be abbreviated by the

symbol 1/Z.

The significance of Z is that it represents the mean free path, or the

average distance traversed by a particle (of kind 1) before a collision

(with a particle of kind 2). This can be seen in the following manner.

Assume that a number no of particles with velocities of approximately

equal magnitude and direction, chosen as the x direction, enter the gas

at X = 0. Each collision removes a particle from the beam, so that the

numl>er of particles, n(x), arriving at a distance x, is uniformly decreas-

ing. The decrease of n at a place x is equal to the number of molecules

reaching that place multiplied by the probability per particle of a col-

lision, namely,

—— Ax = 7 n(x) Ax.
ax L

This has the solution

(1. 41) n(x) =

The distance x at which a particle makes a collision is called its free

path. The mean free path is obtained by multiplying the path x by
the number of particles colliding between x and x + Ax, summing over

all ranges Ax, and dividing by the total number of molecules, namely,

(1.42) /**x^dx = /**7^"dx = 1,

WQ V Q CtX t/Q Z

which identifies the quantity I with the mean free path.

At the distance x Z the number of particles in the beam has been

reduced to the fraction of the initial number, that is, more than half

of the molecules have undergone a collision at some smaller value of x.

The fact that Z is nevertheless the mean free path comes about because,
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of the molecules reaching the place x = I, some go very far; a fraction

of them go further than x — 2Z before a collision, a fraction

further than x = 3Z, etc.

This formula for the mean free path has been derived by assuming

that one molecule is moving, whereas the others are practically at rest.

If we use this expression for the motion of one gas molecule among

others of the same kind, and therefore of the same average velocity, we

introduce a certain inacGurac3^ However, this amounts onl}’' to a small

numerical factor, which is unimportant in view of the much gmver

assumption of rigid mole(‘ular diameters.

We find, therefore, within the accuracy of tins argumeisf, for a gas

of one constituent,

(1. 43)

In a mixture of two gases the total number of coUisioJis which one

particle undergoes is composed luhlitively of tin' mimlxT of (‘olli.sic>ris

which it suffers with each kind of particlf‘. We find, tiierehire, for

tlie mean free path h and k of each kind of partich^

(1. 44) h - 4V{4TdlKi -f Trfrfi + d2)^\2y~\

k ~ 4T f7r(di + 1
4- 4Td2N2)

T(» obtain an idea of the ordvr of magnitude of meat fiJ**? path

one can use the equation of state of the i>erfect gas 1o T’eplaci' t!i(‘ Ji^n-

sity N/V in I by P/kT, obtaining

( 1 . 45 )

k

Tf/^/

At room temperature, T = 3()0°K., and if the diameter d is measured

in Angstrom units, that is, in 10'^ cm., one finds

(1. 46) I =

This relation gives I in centimeters if the pressure is measured in c.g,s.

units, namely, in dynes per square centimeter. If P is measured in

millimeters of mercury the relation becomes

(1.47) OPm™. = 0.1(dA)-2,

with I in centimeters. For atoms and simple molecules the diameter d
is a few Angstrom units, so that the mean free path in millimeters times
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the pressure in millimeters is about one-tenth. With d

obtains the following numerical results:

5A one

p P P 1

dynes per cm^ mm of Hg atmospheres cm

1

1 9.8697 X lOr^ 5.3

1.332 X 10* 1 1.3158 X 10~* 3.9 X 10*

1.0132 X 10* 760 1 5.2 X 10-*

The average lime between collisions is obtained by dividing the

mean free path by the average velocity. At room temperature the

velocity is of the order of a hundred meters per second, so that the time

between collisions at atmospheric pressure is about sec. (hie

molecule of a gas at standard conditions undergoes about 10'® collisions

per second.

In this development the assumption furthest from the truth is the

representation of the molecules as rigid splieres. It is due to this simpli-

fication that a riK'an free path independent of veIo(‘ity, and therefore

indi'peiideiit of temperature, wOkS obtained. Atdnuliy, the molecules

exert long-range attractive forces and short-range n^pulsive forces upon

one another. It is then obviousl}'^ rather difficult to define a collision

and a mean free path, since each particle is at any time interacting

with others, and is constantly suffering slight deflections of its palli.

This is borne out by experiments with siiarply di'fined molecular beams*

in almost perfect vacuum. The effective cross section of the remaining

gas particles appears then to be much larg(;r than that calculated from

gas kinetic data, since a very small deflection effectively removes a

molecule from the beam. However, a very small deflection corresponds

to a transfer of only a small amount of moment um and energy and is

therefore of no importance for the transfer of heat or the viscosity of

gases.

A better approximation for the expression of the mean free path was
obtained by Sutherlandf by representing the molecules as hard spheres,

of diameter do, which, in addition, attract one another. An appreci-

able deflection of one molecule is obtained only if its sphere touches

another one, and only in this case shall we speak of a collision. If a

fast molecule travels past another one which is at rest, it will be but

O. Stern, Z. Physik, 89, 751 (1926).

t W. Sutherland, Phil. Mag., (V) 36, 503 (1893).
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slightly deflected. A slow molecule, however, approaching along the

same line, may be deflected so much that it touches the other one, that

is, it makes a collision. The effective cross section of a molecule in a

collision depends then upon the relative velocity, and the average cross

section upon temperature. One obtains

(1.48) +

where the quantity C, the Sutherland constant, is determined by the»

nature of the attractive forces.

li. Viscosity

The mean free path enters into the theories of all phenomena of

propagation of physical properties over macroscopic distances. These

are notably the transport of momentum, which is connected with the

viscosity of gases; the transport of energy, or heat conduction; and
the transport of mass, or diffusion. These three processes will be

treated here in a rather crude manner. The averaging over different

molecules will be done somewhat incorrectly, so that numerical factors

are quite untrustworthy. A more exact theory, however, becomes

very complicated.

The mechanical set-up in an experiment for the determination of the

viscosity of gases is usually such that the gas is contained between two

parallel plane plates a distance a from each other. The plates may be

taken to be parallel to the xy plane and located at the height « = 0

and z = a, respectively. The low'er plate is kept at rest, while the upper

one is moving with a constant velocity u in the x diniction.

If the distanc(j a between the plates is large compared to the mean
free path the gas “sticks” to the plates; n(»ar the upper yilate, at

z - a, the average velo(;ity of the molecules is Vx = u; n(?ar the lower

one, at 5; = 0, Vx = 0. The average velocity at a height z between the

two plat(*s will be denoted by u{z) (compare end of section le). Since,

owing to the random motions of the particles, equally many molecules

from abo\'c and from below reach the height z, the av(Tagc velocity

u{z) wall be a linear function of the height, namely, u(z) uz/a. If

the mass of th(‘ gas })articles is denot<‘d by m there exists a linear drop

of average momentum

(1. 41>)

a

Although ecpially many molecules from above and from below^ reach

the height z during a second the ones from above will, on the average,
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bring with them a greater value of G than the ones from below. There

will therefore be a constant flow of momentum through any vertical

plane. This flow, through a square centimeter per second, will be

denoted by r(z) and will be calculated presently. If the flow in the

positive z direction calculated, r(z) will be negative.

The momentum arriving at the lower plate, — r(0), represents the

force per square centimeter of surface which tends to move tlie lower

plate in the same direction as the upper one. — r(a) is the momentum
lost to the gas by the upper plate per square centimeter of surface per

second, or the frictional force counteracting the uniform motion.

The ensuing calculation of r(z), the flow of the phyisical quantity G
per second through a square centimeter parallel to the xy plane at the

height z, will be done without making use of the special form of (?(z).

The result may then be taken over immediately for cases in which any

physical property G(z) varies with

height.

The number of particles of veloc-

ity 7 = (Vx,Vy,Vg) which pass in a

second through the square centi-

meter in question is, precisely as

discussed in the calculation of the

pressure in section Id, equal to

the number of particles which are

located at the beginning within a parallelepiped the base of which is

the square centimeter and the length of which is V. The henght of

the figure is therefore
|
v,

|,
its volume \vg\, and the average number

of particles in it
|
y,

|
X N{vxfVy,Vg)/V, If t’*>0 the particles cross

the surface from below; otherwise they come from above. The net

flow of particles through the square centimeter, that is, the surplus of

particles going from below to above, is obtained by integrating

Vt X N(VxfVy,VM)/V, without the absolute value sign, over all veloc-

ities. In a stationary state the net flow of particles miist be zero.

If the velocity component occurs just as frequently as —
that is, if the variation of G with height does not influence the

distribution of the z component of the velocity, I VgN {Vx,Vy,Vz) dv, is
v-OO

obviously zero.

The particles arriving at the height z have traveled in a straight line

since they underwent their last collision. On the average, they will,

since that time, have traversed the distance I, if I signifies the mean
free path. The last collision of a particle with velocity V has therefore,

on the average, occurred at a height z' which is given by z' = z — {vj/v).
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The assumption is now made that at that collision the particle has

come into equilibrium with its surroundings. The average value of

the quantity G which the particles of velocity tT, coming from the height

c', bring with them is then

(1, 50) = G[z - {vJL/v)] - G(z) - — .— .

V CLZ

The net flow of G, namely, the difference of the amount of G carried

up through the plane and the amount carried downward, is' obtained

by multiplying (50) by the number v^N ( »*)/V of particles crossing the

surface in the positive direction, and integrating over all velocities.

(1. 51)

00

r« - cw/// N(t)

V
-00

Vg dvx dvy dvg

^ rrr i^.NCv)

dz JJJ vV
-00

dVx dVy dVg.

The first term, G(z) times the excess of particles streaming through the

element of plane in one direction, is zero in the stationary state. The
second term may be simplified by considering that in an isotropic space,

on the average, = vj = (l/3)v^. Actually, in the problem

treated here, the velocity in the x direction is somewhat different owing

to the average motion of the substance in the x direction. However,

the plate velocity u is very small compared to the gas kinetic velocities.

One obtains then

(1. 52)

The minus sign in the formula shows that the flow takes place in the

direction from higher to lower G values. If dG/dz is positive the flow

in the +z direction must be negative.

In the special case of transport of momentum, according to (1. 49),

dG/dz = mu/a, one finds

(1. 53) r = ^ ^ - •

3 k a

The frictional force per square centimeter of surface acting on the
upper plate is usually written
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rj, thf^ co(*fEcirnt of viscosity, has, according to (53), the value

1 N
(1.54)

If equation (43) for the mean free path is inserted in (54), one obtains

(1. 55)
^ I mv

^
3ir (P

The average velocity v is, according to (32), 55 «
leads to

(1. 56)
l/2V'^ (mkTyf^

2(2kT/Tmy^^, This

This equation predicts that the coefficient of viscosity is independent

of the density, or the pressure, a function of temperature only. This

result was first deduced theoretically by Maxwell and considered at

that time to be rather startling. Subsequent experimentation con-

firmed the theoretical conclusion over a wide range of pressures. That
the viscosity is independent of the pressure has since been regarded as

a strong support of the kinetic theory.

Gibson,* for instance, has measured the viscosity of hydrogen at

25®C. in the pressure range from 11 to 295 atmospheres. The vis-

cosity 17 is 894 X 10""^ poise (gm. cni.’”^ soc."“^) at 10.92, 12.66, and
15.28 atmospheres. It then increases gradually to 901 X 10~^ at 60
atmospheres, and 958 X 10"~^ at 294.7 atmospheres. The gradual

increase does not exceed that expected from deviations from the perfect

gas law, which are considerable at the higher pressures.

The fact that the density N/V drops out of equation (56) comes
about in the following manner. The number of particles arriving per

second at the height z is proportional to the density. The mean free

path, however, is inversely proportional to the density: at increasing

density the molecules have made their last collision closer to the z plane

in question and therefore bring with them values of G which are more
nearly equal to G{z),

At very low pressures deviations from (56) are observed; 17 begins

to decrease. This is due to the fact that the assumption that the gas

sticks to the plates becomes invalid when the mean free path is compa-
rable to the distance a between the plates (see Problem 1 . 4).

Equation (56) predicts further that the viscosity increases propor-

*R. O. Gibson, Dissertation, Amsterdam, 1933, given in Landolt-Bornstdn,

Eg. Ilia, p. 189.
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tionally to Actually, a much stronger dependence on temper-

ature has been observed. If, instead of a temperature-independent

molecular diameter, the Sutherland approximation (48) is used, one

obtains

(1. 57) V liT
{rnkT^f^

where the constant C, a function of the attractive forces, is unknown.

If C is properly adjusted, satisfactory agreement between observed and

calculated data is obtained.

Ij. Heat Conduction

If there is a gradient of temperature in the z direction, the average

energy per molecule, i, will vary with height. We wish to calculate the

flow of energy through a plane at the height z and therefore, in the

equations of the previous section, have to replace the quantity G by

(1. 58) G{z) == i(«).
dz dT dz

ik/dT is connected with the heat capacity at constant volume.

is defined as the increase of energy with increasing temperature for a

mole of substance; that is, for iYo molecules, if ATo is Avogadro's num-
ber.

(1. 59)

This leads to

(J. 60)

dr dT

dz No dz

By inncrtini; (60) into (52) the flow of heat through a square centi-

meter parallel to the xy plane at the height z is found to be

(I. 61) r(z) liE9i ^
3^ V No ^ dz'

Thk k usually written

r(«) = -«
dz

'I'lie heat conductivity, «, is tlien

(1. 62) K
3^ V IVo"'
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Comparison with (54), considering that inNo is the molecular weight

M gives the relation

(1. 63) K
yCy

M ‘

Cv/M = cv is the specific heat per gram of substance, so that vcv/k = 1 •

A more exact theory still predicts this quotient to be constant, but

somewhat different from unity. In Table 1. 1 the quotient has been

calculated for a few monatomic gases* from the values of k and r? given

in Landolt-Bornstein. cy was calculated from the energy relation (14)

and the molecular weight.

TABLE 1. 1

Substance K X 10‘ II X 10‘ Cv
1

ffiv/K

Helium 33.63 19.41 0.745 0.402

Neon 10.92 31.11 0.149 0.424

Argon 4.06 22.17 0.74 0.404

K in cal. cm. ^ sec. * deg. 17 in G.g,8. unite; cy in cnl* degree'*^

Ik. Diffusion

If two vessels connected by a tube with a stopcock are filled with two
different gases, and if the stopcock is then opened, molecules will flow

from the vessel witn higher pressure to that of lower pressure. If pres-

sure. and temperature on both sides of the stopcock are equal there will

be no streaming of gas. However, owing to the random heat motion,

particles of kind 1 will drift into the vessel which originally contained

particles of kind 2 only, and vice versa, until finally both vessels are

filled with a uniform mixture of the two gases. This phenomenon is

called diffusion.

For the calculation of the rate at which this process takes place an
idealized experiment is considered. Assume a tube (of infinite diam-

eter) to be filled with a mixture of two gases of kinds 1 and 2, Let the

axis of the tube be the z direction, and assume that the composition of

the mixture varies along z. The density of molecules of kind 1, that is,

the number of molecules of kind 1 per cubic centimeter, which shall be

denoted by ni, and the density of molecules of kind 2, n2 ,
will then be

* We have compared here data for monatomic gases only. For these gases the

total energy is the kinetic energy of translational motion, equation (14). Poly-

atomic molecules possess, in addition, internal energy (Chapter 6). It is question-

able whether this energy will be readily transferred from one molecule to another

in every collision.
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functions of 2 . If we stipulate that pressure and temperature are uni-

form throughout the vessel, the equation of state of the perfect gas

demands that the total density of molecules, n = ni{z) + n2 {z), be

coastant everywhere. This leads to

(1.64) n = ni(«) + «2 (2); ^ ^ 0-
az dz

Since the distribution of velocities is independent of the density of the

gas, the number of particles of each kind per cubic centimeter with a

certain velocity IT may be wTitten

(1. 65) ni{'v,z) = ni{z)fi{'v), n 2 {l^,z) = n2 {z)j2 {'v),

w^here f\ and /2 are independent of 2. Indeed, /i(ir) is essentially the

Maxwell distribution function, only normalized in such a fashion that
00

J*J*J*
fi(y) dvx dvy dvz = 1. The average magnitude of velocity of

-00

the particles of kind 1 is independent of z and given by

( 1 . 66 ) h =
J'J'J'

I vlfiiv") dvx.

A corresponding equation holds for molecules of kind 2.

The random motion of the molecules tends to bring about a uniform

mixture of the gases. If drii/dz > 0, that is, if the concentration of

particles of kind 1 is greater at larger height, there will be an excess of

these particles streaming through a plane at the height z in the down-
ward direction. The net flow of particles of kind 1, through an area

of 1 cm.2 of the plane perpendicular to the z axis, at the height z, in the

direction of positive z, ri(2 ), will then be negative. It is usually

written

(1.67) r,(2) =
az

where D\ is the diffusion constant.

The flow is calculated in precisely the same manner as in section li.

A particle of kind 1 and velocity T arriving at the height 2 comes, on the
average, from a height 2^ = 2— {vJLi/v), where h is the mean free path
of the molecules of kind 1. The density of such molecules at that height
is

(1. 68) n,

(

7,2') = m (2')/i (7) = ni

(

2)/, (»*) - ^^ (jT).
V dz
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The number of such particles crossing a square centimeter of a plane

at the height z in the '\‘Z direction per second is then

(1. 69) = «, Wi-,/, ( 0*) ^/i (7).
V az

The expression (69} is positive for all particles coming from below, that

is, with Vg > 0; negati\'(? for those coming from above. The excess of

particles going in the positive direction, Fj, is, therefore, obtained by
integrating (69) over all velocities. The first term vanishes, as before,

leading to
00

^

(1. 70) r, (z) = -h^Jff ») dvx dvy dv,.

-00

The integral is simply the average value of rJ/V. Since all directions

of the velocity arc equally probable, rf/r = (l/3)w. The diffusion

constant of the molecules of kind 1 is therefore

(1. 71) D\ = ^ h Vi.

Similarly, one obtains for the flow of particles of kind 2

(1. 67')

with

(1. 71')

r2

D2 = kh V2-

By inserting into these equations the value of the mean free path

(44) one obtains

(1. 72) = + nzidi +
3ir

(1. 72') D2 = ~ V2 [Hi(di + d2)- + 4n2rfir*.
St

The D’s are inversely proportional to the density. If n is expressed

with the help of the perfect gas law, n == N/V = P/kT, one obtains

(1 . 73) '* + ?(''' + *'’] ’
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It is seen that Di and Z>2 depend on the relative concentrations, ni/n,

n2/n, but not very strongly, since the diameters of the molecules will

not be vastly different. If the difference between the diameters is

neglected one gets a relation between the diffusion constant of a gas

and its viscosity coefficient,

^ Nm

This equation can at least be used to obtain the order of magnitude of /).

In general, the two diffusion constants Di and D2 for the two kinds

of particles arc different, Di Da. It is then easily seen that the

constants calculated in this manner cannot possibly be those which

are observed in a closed tube. The total flow of particles in the

+2 direction may be calculated by using the relation (64),

(1.74) r = ri + r2 = -(Di-Dz)^.
dz dz dz

and it is seen that this does not vanish. This means that the density

of particles, n, and therefore the pressure, do not remain constant

throughout the tube, but, if T is positive, increase in the upper part.

This absurd result is usually corrected by assuming that upon the cal-

culated diffusion there is superimposed a uniform motion which just

counteracts the increase in pressure. This uniform motion corresponds

to a velocity — r/n per particle, and a flow —(ni/n)r and — (n2/n)r
of particles of kinds 1 and 2, respectively, through a square centimeter

at the height z in the +z direction.

If this flow is added to the one previously calculated, one obtains the

corrected diffusion

(1. 75)
* ni

rl = I’l
—

i r =
n

V2— Ti-
n

n\

n

II 1 to +
. dm

dz

(1. 76') Tz = - (- +\n
11

dn2

dz

The new diffusion constant D* is equal for the two kinds of particles.

The particles of kind 1 diffuse downward just as rapidly as those of
type 2 diffuse upward, and the pressure remains constant.

It is seen that D* depends greatly upon the composition of the mix-
ture. 1 he diffusion rate will therefore be considerably different at dif-

ferent heights in the tube.
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11. The Scope of Statistical Mechanics

The problems and methods of the preceding few sections are quite

typical of the problems and methods of statistical mechanics. It is

true that they were particularly chosen as illustrative because their

handling required the introduction of a comparatively small number
of new terms and conceptSi and also required no preliminary elaborate

build-up of general principles. As more complicated^ and more gen-

eral, problems are undertaken, it will be found advisable to shorten the

total labor necessary to solve all of them by the preliminary proof of a
number of general theorems, and the development of general methods
which will find wide applicability. It is essentially these theorems and
methods which make up the science of statistical mechanics.

One of the most characteristic features of the usual statistical mechan-
ical problem is the enormity of the number of elementary particles

which go to make up the system treated. In dealing with the perfect

gas, the assumption of a large value of N was necessary to assure the

very existence of a constant pressure on the walls of the vessel and to

hind a useful significance to the velocity distribution function, N(v).

The statistical method makes possible the calculation of the probability

of any arbitrary distribution, and for many sciences, notably the bio-

logical and sociological sciences, in which investigations are made with

systems containing a relatively small number of units, the calculation

of the probability of an abnormal distribution is of importance. In

physics and chemistry it is true that experiments exist which show the

presence of fluctuations from complete equilibrium, and statistical

mechanics has been applied to the calculation of the probability of such

fluctuations, but this part of statistical mechanics will not be of such

great interest to a chemist. In most chemical and physical systems,

the deviations from the equilibrium value shown by most of the observ-

able properties which one attempts to calculate by statistical methods

are either infinitesimally small or negligibly rare. It is sufficient to

calculate the most probable, or the average, value of the observable

proi>erty, and to treat this as though it were the only possible solution.

In section le it was found necessary to assume the existence of forces

between the molecules, in order to assure the existence of a mechanism

by which equilibrium could be established. However, it was unneces-

sary to specify the nature or magnitude of these forces, except to assume

that they were not too large. One of the greatest advantages of the

science lies in the ability to obtain general results without the necessity

of too detailed a knowledge of all the characteristics of the material

handled.

In this particular case, the calculation of the Maxwell-Boltzmann
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distribution law, the dependence of the force acting between two mole-

cules on the distance between them, determines the frequency of col-

lisions in the gas, and therefore the rate at which the equilibrium dis-

tribution of the molecules in the various velocity ranges would be

attained, Tliis rate, of course, was not calculated. We have no method

of ascertaining, without recourse to a more complicated cfilculation,

whether it might take fractions of a second, or years, to attain equi-

librium. We know, however, what to expect after cqmlibrium has been

attained. This is characteristic of many of the methods and problems

of statistical mechanics, problems in which the static properties of the

material are calculated; the mechanism by which the stationary state

is reached has no effect on the results, but, conversely, the sp^d with

which equilibrium is attained is not determined. '

Certain very important relationships between some of the experi-

mentally measurable properties of a system may be deduced by means

of thermodynamics. As will be shown later in this book, the laws of

thermodynamics may Ije explicitly derived as consequences of the

fundamental assumptions of statistical mechanics. Thermodynamics

may then be regarded, to a certain extent, as a part of statistical mechan-

ics. Many who are more familiar with the thermodynamic method

will consefiucntly hasten to formulate many statistical problems in

t!icrniodyn.amic terminology, and to solve them by themiodynanjic

method.'''. For that reason, one of the most useful services of statistical

'neciianics is to give a prescription for the calculation of the values of

the thermodynamic function.« of a system from the mechanical proper-

ti'N of itrS constituents.

One of the more recent and, for the chemist, one of the most fruitful

accomplishments of statistical n)whanie.s has been the accurate calcu-

lation of the fn‘e energj’^, entropy, and .spc'cific heat of many of the

.simpler gases from spectroscopic information.

In the examples tr(^ated so far, no fundamental assumirtions were

made except the validity of the laws of mechanics. This will be found

to 1k) generally true. The fundamental axioms of statistical mechan-

ics are the fundamental laws of mechanics. Statistical mechanics is,

as the name implies, the ajjplication of the statistical method, with the

laws of mechanics, to systems for which, because of their great com-

plexity and size, the detailed methods of mechanics would be valueless.



CHAPTER 2

MECHANICAL AND QUANTUM-MECHANICAL PRELIMINARIES

(a) Introduction, (b) Coordinates, (c) Momenta, (d) Classical

Mechanics and Phase Space, (e) The Uncertainty Principle, (f) Quan-

tum States, (g) Quantum States of Some Simple Systems, (h) The

Combination of Independent Systems, (i) Plqual Probability of Single

States, (j) Liouvillc I'heorem and Equal Probability in Phase Space.

(k) Identical Particles, Einstein-Bose and Fermi-Dirac Systems.

2a. Introduction

Although the axioms of statistical mochank'S arc tliose of nmchanios,

no great familiarity with the more detailed methods of mechanics is

required for the application of statistics to a system. One may go far

iu statistical mochaiiics with a rather elementary knowledge of the laws

of mechanics or of quantum mechanics.

The necessary axioms and concepts will be discussed in some detail

in this cliuiiter. Before entering upon thi.s task we wish to sum them

ui) in a few words. The most accurate description of the- instant.aneou.s

state of a system obeying the laws of dussical nu'chanics consists in

giving the values of all tlie coordinates of the system, and of all the

momenta eonjugated to the coordinate's. If /, the number of degrees

of I'reodom of the system, is the total minimum miiuber of coordinates,

then the 2/ dimensional coordinate-momentum space is called the phase

space of the system.

The point describing tiie state of the system moves through this phase

space along a path, and with a velocity, determined by the laws of

classical mechanics. The calculation of tliis path and velocity may be

a very complicated problem, and fortunately concerns us practically

not at all.

The only property of the motion of this point through the phase

space which it is necessary for us to know and to use is the following:

If a system, known to have an energy lying between E and E + AE, is

isolated, so that its state point moves througli the phase space belong-

ing to this energy range, it will, on the average, over a long period of

time, spend equal times in equal volume elements AB’^ of the phase

space, whatever their location.

33
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It is this property of the phase space, or coordinate-momentum space,

which makes it uniquely useful in the description of the mechanical

state, and which leads us to choose it, rather than, say, the coordinate-

velocity space, for the description of the state of the system.

That the knowledge of this one theorem stating the equal probabili-

ties of equal volumes in phase space is so powerful a tool may be illus-

trated as follows: Every conceivable instantaneous property of a
system is determined by the 2/ values of the/ coordinates and/momenta.
In short, any function, such as the pressure P on a certain area element

of the wall of the container, may be expressed as a function of the

position of the system in the phase space. Tliis pressure P will actually

vary with time, but its time average value represents the pressure which

is experienced thermodynamically. Since the system spends, on the

average, equal times in equal volume elements dW of phase space,

consistent with given total energy, the average pressure P will be

P = yP dWIf dW^ the average value in the phase space, where both

integrals are taken over that region of phase for which the energy lies

between E and E + A£.

All real systems obey the laws of quantum mechanics, which are

somewhat different from those of classical mechanics. Our language is

then slightly altered, although the fundamental concepts are not greatly

different.

Quantum mechanics is characterized by the occurrence of stationary

states of discrete energy. The coordinates and momenta of the system

in one of these states are determined only within a certain range, so

that the quantum state corresponds to a cell of volume in the phase

space. These cells fill up the phase space completely. The quantum-

mechanical analogue to the classical theorem of equal probability of

equal volumes of phase space has then the simple form: All (non-

degenerate) quantum states of the allowed energy are equally probable.

This theorem of equal probability for the quantum states, with some

very general characteristics of the methods of counting the states of a

system from those of its parts, is all that is used in Chapters 3 and 4 of

this book to derive the general laws of thermodynamics, and to show

the methods by which the thermodynamical properties of a system may
be calculated.

In the subsequent chapters these methods are applied to special

systems. It then becomes necessary to use some of the more detailed

results of quantum-mechanical calculations for the constituent mole-

cules. For instance, the equations for the energy levels of monatomic,

diatomic, and polyatomic molecules in terms of their quantum numbers

are used in calculating the free energies of gases composed of these
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molecules. Actually, the numerical values of the energy levels are

always taken from experimental spectroscopic tabulations.

It is not necessary for the student to be able to solve the relatively

involved differential equations giving the energy levels of these mole-

cules, or even to know how the solutions are made. The results of the

solutions are actually used as type forms into which the experimental

data can be fitted, and serve as useful methods of extrapolating energy

values for the higher quantum numbers.

In the subsequent sections of this chapter we have gathered all the

mechanical information that is needed later. The fundamental con-

c^epts are discussed in detail and illustrated with some simple systems.

These examples have been chosen as those for which the energy levels

have to be used in later calculations.

The one fundamental theorem of equal probabilities of quantum
states, or equal phase volumes, is stated and proved, both as a quantum-
mechanical, and as a classical, theorem.

2b. Coordinates

In order to treat the system mathematically it is necessary to intro-

duce coordinates, by which the position of each constituent is described.

There exists a fixed minimum number of coordinates which are needed

to determine fully the position of a particle. For all eases that interest

us here this number coincides with the number of degrees of freedom

and will be denoted by /. If the particle is a point in space it is / = 3;

for two mass points which are restricted to stay at a fixed distance from

each other (dumb-bell) we have / = 5, etc.

The coordinates for the description of a partUile can be chosen in sev-

eral different ways. For a point particle, for instance, we may use

Cartesian coordinates, x, y, z, cylindrical coordinates, or spherical

coordinates, but invariably three will be required. When the forces

acting on the particle are known, convenience will usually dictate the

choice. For example, the positions of two mass points acting upon

each other with a force dependent only on their distance, r, can be

described completely by the Cartesian coordinates of each point. It is

more advantageous, however, to introduce six new coordinates, namely,

the distance, r, between the points; the three coordinates of the center

of mass, Jf, y, Z, and tw'o angles, which determine the orientation of

the main axis, the line joining the two mass points. These angles are

usually measured with respect to a coordinate sjrstem fixed in space,

in such a way that B denotes the angle between the main axis and the

fixed z axis, ^ the angle between the projection of the main axis on the

xy plane and the x axis. If the distance between the mass points is
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rigidly fixed^ the last five of these coordinates alone determine the

position of the system completely. The same coordinates can be

used to describe the position of an infinitely thin rod. If the rod is

restricted to motion in a plane only, throe coordinates, two for the

center of mass and one angle, are sufficient.

If the set of coordinates used is not explicitly specified they will be

referred to as generalized coordinates, and designated by the letter q,

2c. Momenta
The state of motion of the system is defined by the values of the

coordinates g, and the velocities, that is, the derivatives of the coor-

dinates with respect to the time. Time derivatives will always be

denoted by a dot, namely, dq/dt = q. Instead of the velocities we
prefer to introduce the generalized momenta, which are obtained with

the help of the kinetic energy.

The kinetic energy of one mass point is given by the well-known

formula (2), which follows. For a system of several mass points the

total kinetic energy, T, is obtained by adding the kinetic energies of the

individual points. The Cartesian coordinates of the mass points, which

will, in general, not be independent, can now be expressed as functions

of the generalized coordinates q. By differentiating these relations with

respect to the time, and putting them into the expression for T, one

obtains the kinetic energy as a function of the generalized coordinates

and velocities, T(g,^). (The one symbol q is always meant to stand

for all the coordinates, q2 , . . q/, and correspondingly q for all the

velocities. If the system has / degrees of freedom T will depend on all

/ velocities g, and may depend on some or all of the coordinates, that is,

it will be a function of between / and 2/ variables.)

The momentum conjugate to the coordinate designated by is

defined as the partial derivative of the kinetic energy with respect to the

velocity

For example, the kinetic energy of one point particle has the form,

(2. 2) T - + f + i®),

where m denotes the mass, and Cartesian coordinates have been used.

This leads to the ordinary relation between linear velocity and linear

momentum,

(2. 3)
ax— = p, = m±-, P» = p, = m2.
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Relations (1) can always be used to express the velocities as functions

of the coordinates and the momenta and to eliminate the g’s from T,

obtaining instead T as a function of the coordinates and the momenta,

T(g,p). In this special case we find

(2.20 + +

The kinetic energy of two mass points with masses wii and m2 can be

expressed either in Cartesian coordinates as the sum of two expressions

of the type (2), or in the coordinates of the center of mass, X, Y, Z,

the distance r, and the angles 6 and discussed in section 2b. In the

latter coordinates it takes the form

(2. 4) X = i.!??
2

(A'2 + z2) +

miW2

2 mi + m2

(e® + sin-e
^

mim2 o
r^.

nil +

Introducing the abbreviations: the total mass M = mi + m2 ,
the

reduced mass /x = mim2/(mi + m2 ), and the moment of inertia

I(r) = this becomes,

(2. 4') T = IM(X^ + r 2 + + i/(02 ^ ^5^20 ^2) ^ i^f,2

From this, according to (1), one obtains the momenta,

(2. 5) px = MA^ py = MY, V, - MZ,

(2. 6) Pb = I{r)B, = I (r) Hin^S 0,

(2. 7) Pr = pr.

The first three expressions are analogous to those obtained in (3) for Px

as a function of x. In fact, the momenta conjugate to the Cartesian

coordinates of the center of mass are always given by (5). p^ and

p$ arc two components of the angular momentum yT. p^ is the compo-

nent along the z axis, = 0 axis), and pe that in the variable direction

normal to both z and the main axis. Elimination of the velocities out

of (4'), with the help of (5), (6), and (7), leads to

(2. 4") T(p.9) ^^,(Pi + vl+ Pt) +
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If the distance r between the two particles is rigidly fixed, f will

be zero, the last term in (4), (4'), and (4") will be absent, and the

moment of inertia I will be a constant. In this case the coordinates

and momenta obtained can also be used to describe an infinitely thin

rigid rod, with M the total mass of the rod, and I the moment of inertia

with respect to the center of mass; or, indeed, to describe any rigid

body for which one of the three principal moments of inertia is zero

and the other two are equal.

It is important to notice that it follows from (1 ) that the product of

a coordinate and its conjugate momentum has always tin; dimensions

of energy multiplied by time.

2d. Classical Mechanics and Phase Space

In all mechanical problems concerning us here the forces acting on

the particles of the sy.stcm will depend on the position only and, more-

over, will be of the special type called conserv^ative forces. This means
that there exists a function U of the coordinates of the system, called

the potential energy, which luis the property that the force acting on

any point particle constituent of the system in any, say the x, direction

is given by the negative derivative of U with respect to the x coordinate

of that point,

For forces of this nature the law of conservation of energy holds: the

sum of kinetic and potential (mergy of the system is constant during

the motion. This theorem will lead us immediately to the first law of

thermodynamics.

If we express T as a function of the coordinates and momenta, we
shall designate the sum of the kinetic and potential energies by the

letter H, and have, therefore, the relation

(2- ») = T(p,a) + U(g) = E,

where E denotes the constant value of the energy. H{p,q) is called

the Hamilton function of the system. It should be pointed out that in

more general cases than those considered here H(p,g) may not coincide
with the energy.

Using the Hamilton function, the e(|uations of motion can be exprc.ssed in
the so-called canonicral form
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If the forces between, and the outer forces acting on, the particles

are given, the laws of classical mechanics (for instance, in the form
[10]) permit the calculation of the motion of the system, that is, of the
numerical values of all the coordinates and the momenta, as a function

of time. There exist very many different solutions of the equations of

motion. For a system of / degrees of freedom the motion is uniquely
defined only if 2/ arbitrary “ initial conditions are prescribed, for

instance, the numerical values of all the coordinates and momenta (or

velocities) at a certain time Iq. Exact knowledge of the state of the
system at one time enables one to determine its exact behavior in the
future.

Instead of fixing the 2/ arbitrary constants of the solution by giving

the initial values of the p’s and the g’s, it is of course equivalent to

stipulate the initial values of any 2/ independent functions of the coor-

dinates and momenta. Since the energy is fully determined by the

initial conditions and, moreover, remains constant during the motion,

it is very often preferable to choose these functions in such a way that

the energy is one of them.

A useful concept for the illustration of the motion of the system, and
one that plays an important role in classical statistics, is the ‘‘ phase

space,” a space of 2/ dimensions, the axes of which are all the coor-

dinates and momenta of the system. At any time the state of the

system is given by one point in this space; in time the system travels

along some perfectly fixed path, w'hich can, in principle, though not

always in practice, be calculat<'d from the laws of mechanics. Through

every point in this space there passes only one possible orbit of this

system.

Since, as we have already noted, the product of any coordinate and

its conjugate momentum has the dimensions of energy times time, the

dimensions of a volume element of the phase space of / coordinates and

f momenta will be those of the/’th powder of energy multiplied by time.

If different coordinates are chosen for the description of the same

system, phase spaces are obtained in which the paths of the system look

entirely different. The dimensions of the volume element in two dif-

ferent phase spaces of the same system an? the same, however. Further-

more, it can be showm that all points filling the volume element ATF

in one phase space of the system fill prei^isely the same volume in any

phase space obtained by different coordinates.

It can be seen readily that a mere change of scale of one coordinate

of a system does not alter the phase volume, since, from equation (1),

a change from x to x' — ax brings about a change in the corresponding

momentum from p* to pj = pjc/o, if the units of energy and time are
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held constant. The general proof can be found in Gibbs* that the

Jacobian leading from one set of coordinates and conjugate momenta
to another such set is unity.

The reasons for choosing the space of coordinates and momenta
instead of that of coordinates and velocities, or of coordinates and some
other functions of the velocities, are intimately connected with these

considerations, and with the liouville theorem, discussed in sec-

tion 2j.

For one point particle which is restricted to motion along a straight

line, the x axis only (bead on a string), the phase space has two dimen-

sions, and the coordinates x and Px» If the point is under the influence

of no forces, the Hamilton function consists of the kinetic energy

T ~ (l/2m)p^, and the equations of motion lead immediately to

Px = 0, or px = constant. The possible paths of the system consist

therefore of straight lines of constant px, parallel to the x axis. If the

particle can move in a plane, with coordinates x and the phase space

has four dimensions. In the absence of outer forces, p* and Py are con-

stants, and the paths of the system are again straight lines, lying in the

two-dimensional planes of constant px and Py, normal to the p* and Py
axes. Elimination of the time from the equations foi the path shows

that the x and y coordinates are connected by the relation pyX —
Pxy = constant.

The points corresponding to one value of the energy E form a sur-

face of dimension 2/ — 1 in the phase space, vrhich divides the space

into two parts, one of liigher and the other of lower energy. Obviously,

surfaces of different energy do not intersect. The paths or orbits of a

system lie in these surfaces. In the first example quoted, the surfaces

of constant energy coincide with the lines of constant p*; in the second

one they are three-dimensional, independent of x and y, and their inter-

sections with the pxi Py plane form circles around the origin, p* + pj
=

2mE,
We will later be interested in systems made up out of N independent,

identical subsystems (the molecules), which we shall, for convenience,

term particles. The phase space of the individual constituents of

dimensions 2/ is called the p-space (the molecule space). The con-

figuration of the total system is given by N points in this p-space. The
phase space of the total system, in which one point describes the loca-

tions and momenta of all particles, has the dimension 2fN, and is

called the y-space (the gas space). These concepts will be used con-

tinuously in subsequent chapters.

* J. Willard Gibbs, Collected WorI», Longmans, Green, New York, 1028, Vol. II,

Part 1, p. 14.
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2e. The Uncertainty Principle

Quantum mechanics introduces a change in these concepts of the

motion of a system in phase space. Classical theory always takes for

granted that all coordinates and momenta can be measured with any

desired accuracy; that the reaction upon the system of the act of meas-

uring a quantity can be made arbitrarily small, since the sample body

with which we measure can be made as small, and the light by which

we see as weak, as we want. Now we know that this is not so, and that

there is not only an experimental but even a theoretical limit below

which the influence of the measurement on the measured system cannot

be suppressed. The measurement of a coordinate of a particle neces-

sarily changes the momentum conjugate to that coordinate, by larger

amounts the more accurately the measurement of the coordinate is

made, and changes it in an unpredictable way.

The type of argument by which this is shown may be indicated by an

example. If, for instance, we want to measure the position of an

electron (or even the position of a larger body) with the help of an ideal

microscope, we cannot possibly hope to determine it within a smaller

range, Ag, than the wavelength, X, of the light by which we are observing;

light of short wavelength will therefore be more advantageous. For

the measurement we have to use at least one quantum of energy, and

for light of frequency v this has the energy hv and the momentum hv/c,

in which h is Planck’s constant of dimensions energy multiplied by time,

and numerical value 6.626 X 10“"^^ erg second, and c the velocity of

light. In the process of measurement the quantum transfers all, or

part, of its momentum to the measured particle, so that after the obser-

vation the momentum p of the particle will be altered by some amount

which can be as much as hv/c. Since v \ — c, the product of the range

Aq, within which q was determined, and the range Ap, within which p

was changed by the measurement, is at least

(2.11) Ap-Ag^A.

Similarly, an observation of the momentum brings about a change in

the coordinate. On account of this reaction of the measured system to

the measurement it is impossible, even with an idealized experiment, to

determine both the coordinate q and its conjugate momentum p for any

system exactly, and all quantitative investigations show that they can

be determined simultaneously only within accuracies Ag and Ap, respec-

tively, such that (11) holds.

Now it is one of the characteristic features of quantum mechanics

that it answers questions of experimental significance only; statements
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range* a ^ function satisfying these conditions can be found only for

certain discrete values of the energy E, called the energy levels of the

system. These levels can be numbered consecutively by integers n,

the “ quantum numbers,” in such a way that n = 0 usually designates

the lowest energy level of the system, higher n’s corresponding to higher

energies. We denote energy and ^ function belonging to the nth level

by JSn and For these systems of one degree of freedom the phase

space is two-dimensional and the points of constant energy form non-

intersecting lines in it. The lines corresponding to the energies of

the permissible levels subdivide the phase space into cells. The volume

of these cells, really an area of physical dimensions energy multiplied

by time, is exactly h. The statement that the system has the quantum

number n is then the most accurate possible description of its state that

can be made without violation of the uncertainty principle. A quan-

tum-mechanical state is therefore defined by the quantum number.

The occurrence of discrete energy levels is an experimental charac-

teristic of the behavior of atoms and molecules. Classical mechanics

was unable to explain this phenomenon, since by its laws the energy

can always have a continuous range of values. In systems of large and

heavy bodies the levels lie so close together that the energy is for all

purposes continuous, and classical mechanics is the limiting case of

quantum mechanics, applicable to large and heavy bodies.

For systems of more than one degree of freedom the wave function

will dep)end on all / coordinates.
| ^(gi,

• •
* g/) I^Agi • • • Ag/ is the

probability of the coordinates having simultaneously numerical values

between gi,
• •

•
, g/, and gi + Agi, • •

• g/ + Ag/, respectively. Every

discrete energy level can be designated by / quantum numbers

ni, ‘
, n/, each capable of taking integral values only. The quantum-

mechanical state of the system is defined if all / quantum numbers are

known.

The states of the system are packed into the phase space in such a

way that each corresponds to a volume h^. That means that the num-
ber of quantum states having energies lying between Ei and E2 ^vill

become equal to the volume of phase space between these energies,

divided by if the interval between Ei and E2 is not too small. The
quantum-mechanical state gives a description with the greatest accu-

racy allowed by the Heisenberg principle.

It will sometimes happen that several sets of quantum numbers
correspond to the same value of the energy, in other words, that for

* If the volume available to the ^tem is infinite the energy levels may not be
discrete (compare section 2g> example 1). The complications arising from this are
overcome here by always considering finite, although possibly veiy large, volumes.



Eq. 2. 18'] SOME SIMPLE SYSTEMS 45

one energy value we obtain several, say g, different, linearly independent

eigenfunctions. In that case we say that the level is ^>fold degenerate,

or that it consists of g states. A state, according to our definition, is

always non-degenerate.

In general the prescription for the calculation of the wave function is the

same as for one degree of freedom; the momentum conjugate to the coor-

dinate Qvj is replaced by the differential operator (h/2in) (d/dqp) in the Hamilton

function. The wave functions are the solutions of the partial differential

equation;

(2 . 12') (±
\2iri dqi

A A
’2in flg/’”’"

•
't'i.qi,

• •
•

, 9/)

= E • • •
•

, q/).

4' and its derivatives must be continuous and finite, and the “normalization”

condition is

(2 . 130

If the range of the q'a is finite this condition can always be fulfilled by multi-

plication of ^ with a suitable constant, for is also a solution for the same
energy value as yp and will, of course, not be called a different solution.

It follows from the nature of the differential equation (120» namely, from

the fact that it is linear and homogeneous in yp, that, if two yp functions are

eigenfunctions belonging to the same energy value E, their sum and difference

are also solutions of the equation. Therefore, out of the g wave functions of

the same degenerate level one can construct in many ways g linearly independent

combinations which describe the degenerate level just as well as the original

functions. This means that a degenerate level is made up of single states, the

total number of which, g, is fixed, but the single states themselves are not unam-

biguously defined.

2g. Quantum States of Some Simple Systems

A few examples are given of systems the energy states of which are

to be used later.

Example 1. A point particle moving infield^-free space. From a classical

point of view this system has already been discussed in sections 2c and

2d. Since the potential energy is constant the total energy is kinetic and

the Hamiltonian is given by equation (2')i

ff = T = (l/2m)(p® + pI + pI).

The wave equation in this case is

h* /ay ay
8ir*m \d** dy* ds* /

E>4(.x,y,t),
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and the most general solution is given most conveniently in the complex* form:

^ « const.

with ^ (Px + Py + p?) =*

Since solutions with positive and negative components of p belong to the same
energy value all levels arc degenerate, and we can also use linear combinations

of the exponential, for instance, the sine and cosine functions, as solutions.

Let. us first tassiime that the particle is restricted to motion in one

dimension, along the x axis, only. If the space is truly infinite, that is,

X can run from — « to + « ,
then there are no discrete energy levels,

and the systc’iu can have any amount of energy. The eigenfunctions

arc complex exponential functions, so that
|

is a constant, that is,

the particle can with equal probability be found at any point in space.

Tlui inoincntum Px is then sharply defined, in agreement with the

une(»rtaiuty principle, since the value of the coordinate is absolutely

undetermined. In this case the ^ function cannot be normalized,

corresponding to the fact that the probability of finding the particle in

any finite range, Ax, of the coordinate x, is zero. If, however, the

particle is restricted to a space of length I, that means 0 x J, and

if the walls at zero and I are assumed to be perfectly reflecting, so that

<he energy of the particle remains unchanged, then in cla.ssical theory

fhe particle will be reflected back and forth between the walls. In

(plantum mechanics this imposes a boundary condition on the ^ func-

tion. Obviously, if the walls are perfectly reflecting, the probability

of finding the particle outside should b(^ zero, whi(‘h is to be expressed

by ^ = 0. Since the ^ function is to be continuous in space, ^ has to

be z(‘ro at the boundary, namely, at x = 0 and at x = Z. This condi-

tion can be fulfilled only for certain discrete values of the energy, and
therefore of the magnitude of the momentum, namely, for

(2. 14) Pxl - 2^*^*
B —

1
)^- k®

where k* is any positive integral number. All energy levels are non-de-

generate. The eigenfunctions are sine functions

* The complex number may be resolved into its real and imaginary parts by
means of the equation ~ cos a + i sin a. It follows that the absolute value

B(iuared is always unity,
|

= cos* o -f sin® o *= 1. It is seen that, for

0*0, t/2, it, 3^/2, and 2ir, the value of c*® is 1, i, —1, — and 1, respectively.

The function e** is periodic with the periodicity 2r in o,
*'2').
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If the particle can move in three dimensions^ but is confined to the

inside of a cube of side length I, volume V = P, with perfectly reflect-

ing walls, each state is characterized by three integral, positive num-

bers, ky, k,, which we may regard as components of a vector k of

magnitude k. The three components of the momentum are

(2.16) |p.|-|k., = lp.l = |k.,

60 that the magnitude p of the momentum is proportional to the magni-
tude k. The energy levels are given by

(2. 17)
A®

k*
A*

(1^ + k^ + kj),

and the eigenfunctions are products of sine functions

(2. 18)
(0

. kzx
smx -r- sm T

Kv
Sin TT

*

K^Z

Here we find that most of the levels are degenerate. The energj" is

determined by the magnitude p of the vector "p, but in general there

will exist several vectors 'p of different orientations with the same total

magnitude. This corresponds to states of motion with the same veloc-

ity but differing directions of propagation. For instance, the state

given by k, = 1, ky = 2, k, = 3 has the same energy as the one for

which k, = 2, ky = 1, k, = 3, and several others.

Example 2. The harmonic oscillator, A system with one d(‘gree of

freedom in which the force is proportional to the displacement, q, from

an equilibrium position, g = 0,

(2. 19) mq ^ -aq,

is called a simple harmonic oscillator, m designates the mass. The

Hamiltonian of this system is

(2.20) i/(p,9)=^P® + ^9^

and the solution of the classical equation of motion is

(2. 21) q == b cos 27ri'(^ + a), 2irv = \^a/m.

The motion is periodic with the frequency v\ h and a are the two arbi-

trary constants which can be adjusted to lit any initial c<mditions for

q and p(» mi).
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In quantum theory the energy levels of this system are all non-de-

generate and equally spaced,

(2. 22) Ey - AKv + i),

where h is Planck's constant, v the classical frequency of vibration, and

V can be any integral number from zero to infinity. It turns out that

even in the lowest state, v = 0, the oscillator has the energy the
”
zero point energy," whereas classically the state of lowest energy is

the state of rest with zero amplitude and zero energy.

We shall meet the oscillator equation when we consider the vibrations

of molecules. The coordinates q will then be the normal coordinates

of the modes of vibration, which sometimes depend in a rather compli-

cated manner on the coordinates of the individual atoms. The corre-

sponding masses will be combinations of the masses of the atoms. In

the special case of diatomic molecules q is simply the difference between

the actual and the equilibrium distances of the two atoms, and the mass

is the reduced mass. (See example 4 of section 2h.)

Example 3. The rotator. A rotator is a body the position of which

at any moment is fully characterized by the two angles which give the

direction of a straight line, its main axis, in space. We want to con-

sider the case where no outer forces are acting on the body. This

system is realized by a mass point tied with a string to some point in

three-dimensional space. The motion around the center of mass of an

infinitely thin rod, or a dumb-bell which can rotate about any axis in

space, obeys the same laws.

The coordinates of this system are the $ and 0 described in sections

2b and 2c, where also the corresponding momenta are calculated. The
Hamiltonian of the system is given by part of (2. 4") and is

(2,23) +

The classical calculation shows that the motion always consists of rota-

tion with uniform angular velocity in a plane, so that the total angular

momentum ? is a constant, and the energy E = (1/2/)

The quantum-mechanical states are characterized by two integral

numbers, j and m, where j can take any positive value from zero to

infinity, whereas m has any value between — j and j, so that
|
m

|
< j.

j determines the total angular momentum by the equation

(2. 24) ^ ^

(A/2ir)m is equal to the projection of the angular momentum vector on
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the z axis, and its magnitude must therefore be equal to or smaller

than j. m corresponds to the orientation of the classical plane of

motion. The energy depends only on j and is given by

(2.25) +

Therefore all energy levels except the lowest one for which j = 0 are

degenerate, the degree of degeneracy being given by the number of

values of m consistent with a fixed value of j, which is 2j + 1.

The preference of the z axis is arbitrar>' and due to our choice of coordinates.

A different choice of axes would bring about different ^ functions which are,

however, only linear combinations of the original 2j + 1 eigenfunctions belong-

ing to the same energy value, in agreement with the fact that the single states

that make up a degenerate level can be chosen in different ways, as discussed

in section 2f.

Example 4. The symmetrical top. One more system the energy

levels of which will be needed for the discussion of polyatomic mole-

cules is the so-called symmetrical top, moving with fixed center of

gravity under the influence of no forces. The symmetrical top is a

body for which two principal moments of inertia are equal, denoted in

the following by A, the third one being denoted by C. The system

has three degrees of freedom, its position can be characterized by three

angles, and therefore each energy state by three quantum numbers, j,

m, and k. j can have positive values only, whereas m and k can also

take negative values, but are both restricted to lie between —j and j:

j
m

(
< j, I

k
I
< j. The energy levels are

(2.26) £,...^[i(i + .)l
+
(i-i)2.j.

Since m does not occur in E and k and —k lead to the same value, it is

seen that a level with k = 0 is (2j + l)-fold, one with k ^ 0, 2(2j + 1)-

fold, degenerate.

The simple rotator is the limiting case of the symmetrical top for

C = 0. Finite energy levds are then obtained only if k = 0, and these

coincide with those given by equation (2. 25).

2h. The Combination of Independent Systems

In the future we shall very often be interested in systems which con-

sist of two or more, and indeed usually of very many, subsystems,

which are independent of one another. It is therefore importwt to

know how the eigenfunctions and energy values of the total system

depend on those of its parts.
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By the statement that two systems, a and 6, are independent we
mean that the motion of one system is not in any way influenced by the

state of the other one, that is, that no forces are acting between the two

systems. This finds its mathematical expression in the statement that

the Hamilton function, //, which for all purposes of this book is the

energy as a function of the coordinates and momenta, is a sum of two
parts, Ha and Hb, Ha depending on the coordinates and momenta of

a, Hb on those of b only

:

(2. 27) H * Ha(Pa,qa) + HbiPb^Qb).

In that case the eigenfunction ^ of the total system, the combination

of the two independent parts, a and 6, is the product of the eigenfunc-

tions nnd i/bi

(2. 28) ^ • ^6,

and the energy £ is, as one would expect, the sum of the energies Ea
and Eb of the subsystems.

(2. 29) E^Ea + Eb.

A state of the total system is defined by the quantum numbers of the

two independent parts. For this treatment it is completely imma-
terial whether the subsystems are near or far, equal or very different.

The only condition is independence. For truly identical subsystems

some of the quantum states of the total system are not realized in

nature, as will be discussed in section 2k.

A special case of this occurs if in a system the motion of one coor-

dinate is not influenced by the motion of the others, so that the portion

of the Hamiltonian containing this coordinate and its momentum
behaves, mathematically, like that of an independent system. Classi-

cally this means that the variables are separable.

Example 1. We have already encountered one example of this in

section 2g, example 1. The three Cartesian coordinates of a particle

moving in a field-free space occur not at all, the momenta only in three

additive terms in the Hamiltonian. The boundaries, and therefore the

boundary conditions, each involve only one coordinate. The motion

in the x direction is completely independent of that in the z or y direc-

tion. The eigenfunction of the particle, therefore, can be written as a

product of three functions, each depending on one coordinate only. The
energy is the sum of the kinetic energies of each component. Since, fur-

thermore, the motion in all three directions is subject to the same condi-

tions, the possible states and energies are the same for each component.
In this way equations (17) and (18) can be derived from (14) and (15).
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Example 2 is that of the dumb-bell discussed in section 2c, which is

subject to no outer forces, so that the total energy is kinetic and given
by (4^^) with the last term containing pr omitted.

(2. 30)

Here the motion of the center of mass does not influence the rota-

tion, since the part of H depending on X, F, Z, does not involve 6 or

and vice versa. If we again a^ume the particle to be confined to a
cubic space of volume V = I®, with perfectly reflecting walls, the eigen-

functions and states of the translation of the center of mass are the

same as those of a' point particle in this space, (17) and (18). A state

of the total system is determined by the state of translation and of

rotation (see section 2g, example 3) namely, by five quantum num-
bers, kx, k^, k„ and j and m. The energy of the state is

(2- 31 ) = + + + +

Let us now assume that in this dumb-bell model the distance r

between the two mass points is not rigidly fixed, but that the points

are tied together by a weightless spring. We will then have an addi-

tional term in the kinetic energy, (4")i and also a potential energ>'

depending on r, which, at least for small deviations from the equilibrium

distancero, is proportional to the square of this deviation, = (r — ro)^,

so that the total Hamilton function becomes

(2.32) H.i(p; + ri + p;) + l(^«+^rf) +

The additional last two terms are the Hamiltonian of an oscillator,

(20), with frequency 2irv = the energy levels of which are given

by (22). These terms are also independent of the coordinates of the

center of mass. However, oscillation and rotation interact, since the

part of the Hamilton function which contains pe and p^ also contains

I (r) — ftr^. The moment of inertia changes during the vibration, and

the centrifugal force displaces the equilibrium position. However, if

neither rotation nor oscillation is very large, these effects are of second

order, so that one can treat the motions roughly as independent, by

replacing I (r) by the moment of inertia at equilibrium, 7o = With
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that «mplifi<»Atiftn the energy states of the osdllator-TOtatOT are defined

by the six quantum numbers kg, ky, fcf, j, m, and r, and given by

(2. S3) + Ent. + Eyib.

-5i^« + '4 + '^) + iS*“ + ‘> + K' + 5)-

This approximation to the energy of the levels is not always good

enough for exact calculation. In Chapter 7 we will take into account

the deviations from this equation.

Example 3. A system consisting of one atom is described by the

three coordinates of the nucleus and the three coordinates of position of

each electron. In addition, each electron has a spin of 2 f

angular momentum of | measured in units of (h/2r), which can have

either of two possible orientations. The spin of the nucleus will be

designated by Sn, an integer or half integral number, which can have

(2Sn+l) different orientations. The magnetic moment associated

with the nuclear spin is extremely small, so that the interaction between

it and the electrons can be neglected, and all orientations of nuclear

spin have the same energy.

If no outer force is acting on the atom, the motion of the center of

mass, which practically coincides with that of the nucleus, can be

separated from that of the other coordinates. The energy consists

then of the sum of translational and electronic energies, the former

being given by (17). We will fix the zero of energy" in such a way that

the energy of the lowest electronic level is zero. The energy of the

next level is usually very much (several electron volts) higher than that

of the ground level, so that, as will be seen in Chapter 6, it will not

affect our statistical calculations. For these cases, the energy levels of

the total system, the atom, can simply be represented by (17). It has
to be borne in mind, however, that a state of the total system is defined

by all quantum numbers, translational, electronic, and spin. If, there-

fore, the electronic ground level is g«-fold degenerate, owing to electron

spin or for other reasons, and if the nuclear spin has the magnitude Sn,

each level determined by k*, ky, k« in (17) is ^ = fifg(2s„ + l)-foId

degenerate, that is, it consists of g single states of the totd system.
Example 4. A diatomic molecule, moving under the influence of no

outer forces, is also a system for which the motion of the center of

mass can be separated. Again the higher electromc levels can
usually be neglected, since they have so high an energy that they are
not excited at ordinary temperatures. The motion of the electrons.
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owing to their smaller mass, is very much faster than that of the nuclei,

with the result that they act on the nuclei like a stationary cloud of

negative electricity. In this cloud there exists an equilibrium distance

between the two nuclei, that is, a distance of least energy. This posi-

tion will, of course, be different for different electronic levels.

For deviations from this equilibrium position the electronic cloud

exerts a force on the nuclei which is, in the first approximation, propor-

tional to the displacement. In addition, the axis of the nuclei in space

is not fixed so that the whole system can rotate. Consequently, for

any given electronic state, the system can be approximately represented

by an oscillator-rotator whose Hamiltonian is given by (32). Since

the electrons are very light, the moment of inertia is determined by the

distance between, and the masses of, the nuclei, only. The energy

levels of the molecule are therefore given approximately by (33).

However, there will be deviations from this equation, due, first, to

the fact that the force acting on the nuclei is not exactly proportional to

the displacement, but also contains higher powers of so that the

vibrations are not purely harmonic; and, second, to the interaction of

rotation and vibration discussed under example 2,

If the electronic level is ^«-fold degenerate, and if the nuclei have spins

Sni and Sn2 f
respectively, the levels of (33) have a further degeneracy

in addition to that due to the 2j + 1 different values of the quantum
number m, for every value of j, namely, each level defined by k*, ky,

k„ j, m, and v, corresponds to g = ^e(2Sni + l)(2Sn2 + 1) states of

the total system. If the nuclei are identical, some of these states are

not realized in nature, as will be discussed in section 2k and Chapters

6 and 7.

2i. Equal Probability of Single States

We will later be interested mainly in systems which consist of very

many (10®^) individual particles, and which, therefore, have a very

great number of degrees of freedom. In that case the possible energy

levels, which are determined by / quantum numbers, are usually con-

siderably degenerate and lie close together, so that for practical pur-

poses they are continuous. We will be interested in knowing the

density of this continuum, that is, the number of quantum states of

the system the energies of which lie in a range AE, between E and
E + AE, If we chose the range AE too small, the number in question

would be small and would vary erratically with E. If, however, the

value of AE taken is large compared to the difference between the

energies of neighboring levels, the number will be large, approaching a

smooth function of E, and be proportional to the energy range AE.
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We shall denote this function by Q(E) AE for large systems composed

of many particles, and by C{E) AE for simple (constituent) systems.

Actually this crowding together of states occurs even for the higher

quantum numbers of some simple systems. For instance, the energy

levels of a point particle in a cubic space of volume V are, according

to (17),

(2. 17) E - g^y2/s + k*) = g^^.2/3
k^

where k*, ky, kg have to be integral, positive numbers. We can imagine

these three numbers to be the components of a vector k of magnitude

k. For a large vector, large compared to 1, the condition that it« three

components be integers is less stringent than for a small vector, so that

the levels become more diegen-

erate and closer together as

the energy increases.

To calculate the number C(E)

for this system it is easiest to

imagine the end points of the

vector k plotted in a three-

dimensional k space. A cross

section through this space, that

is, a two-dimensional k space,

is shown in Fig. 2. 1. All the

points corresponding to quan-

tum states lie in the eighth

part of the space for which all

three components are positive,

and there form a simple cubic

Fia. 2. 1. Diagram of a two-dimensional k lattice. Since in this part of

space. the k space a cube of unit

volume contains exactly one

lattice point, the number of lattice points in a certain region will be

given by the volume of that region, provided that the region is chosen

large enough so that small discrepancies at the borders have no notice-

able effect. The number of lattice points whose distance from the

origin lies between k and k + Ak is equal to one-eighth of the volume of

the spherical shell of radius k and thickness Ak, namely,

^'k*Ak.
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By expressing k in terms of the energy with the help of (17) one obtains

the desired number as

mV
(2. 34) C{E) AB = 4t {2mEyf^ AE.

With many degrees of freedom obviously the effect will be much
more pronounced, that is, the number of states in an energy region AE
will be much larger and can always be represented very accurately by

a smooth function, ^l(E)AE. Under such circumstances we will lose

interest in knowing tjie exact quantum state of the system. In fact,

this statement becomes meaningless; namely, if a very small perturba-

tion acts on the system, this perturbation will induce the system to

make discontinuous transitions from one state to another with prac-

tically the same energy. These perturbations are always present.

They may come from the outside or, more often, from effects inside the

system that have been neglected in the mathematical idealization. In

this latter case the law of conservation of energy must hold. For

example, an atom in a certain excited quantum state can radiate spon-

taneously, but the energy it loses will be found in space as light. Or,

if we consider a large system, made up of independent small systems,

for instance point particles, there will certainly, in reality, exist inter-

actions among the particles, at least in the form of elastic collisions, in

which classically, as well as quantum mechanically, energy and momen-

tum are conserved, although the state of the total system is changed.

Actually, the energy of a state is sharply defined only if the state is a true

stationary state, that is, if the system remains in it for an infinite time. If,

however, perturbations are acting, such that the system makes a transition in

a time At, the energj' can be determined only within a range AE such that

(2. 35) AE-At^k,

This uncertainty relation lietween time and energy is quite analogous to that

existing between coordinate and conjugate momentum (11). An example of

this is the natural width of a spectral line, Av, The width of energy, Ahv, is

connected with the lifetime of the (upper) state by equation (36).

Therefore, in a large system, on account of the fact that the energy levels

are not sharp, owing to inner perturbations, transitions will be possible not

only between states of exactly the same energy, but also between states of

approximately the same energy. This is no violation of the law of conservation

of energy, since it means only that the energy values calculated are not the

true ones, and the quantum states not the true stationary states, which would

be found if all perturbations were taken into account.

Obviously, if At were very short, AE, therefore, very large, the assumed

energy states would become very bad approximations to the true ones, and the

calculations would no longer represent the true state of affairs.
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It would, in principle, be conceivable to take all these inner perturbations

into account in a perfect calculation of the true stationary states. If then the

system were to remain completely isolated for infinite time it would stay in one

state of sharp energy. Every observation or experiment performed on the

system, however, induces transitions, and the energy of the complete system

cannot be determined more accurately than relation (35) allows if Af is the

time elapsing between observations.

The energy of any system has a natural uncertainty bE, determined

by the extent to which the system is influenced by its surroundings.

This means that a definite number 0 = 12 (i?) bE of quantum states are

available to a system, even if its energy is determined as accurately as

possible.

The rate at which the transitions between these 12 states take place

depends on the strength of the perturbation; it will not interest us in

the calculation of equilibrium phenomena. However, transitions < are

governed by some general laws which are very important for the founda-

tion of statistical mechanics. If the system is originally in the state r

let us denote the probability of finding it after a time di in the state s

by dt] similarly, the probability of finding the system in the state

r after it was known to be in the state s will be denoted by w„ dt. It

follows from the general laws of quantum mechanics that

(2. 36) Wfn = iCg,,

that is, the probability of a process and that of the inverse one are

equal. This theorem, known as the principle of detailed balancing, is

a direct and strict mathematical consequence of the theory of pertur-

bations.

It is conceivable that a system, starting in a state r, can never go,

directly or indirectly, that is even by detours over other states, into a

certain group of quantum states of the same energy. In that case the

system will be called non-ergodic. In the future we shall always make
the assumption that all our systems are ergodic, that is, that every

quantum state of the system can be reached, directly or indirectly,

from every other state.

For ergodic systems the following fundamental law can be proved:

if the system starts in a state r, it will in time pass over into every one

of the states of approximately the same energy, and will on the average

spend equally long times in each. This means that if the energy of the

system is determined, within a range AJ5, the probability of finding the

system in a certain state, compatible with that energy, is the same for

each state. This law of equal probability of single states ’’ is the

basis of statistical mechanics.
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This theorem implies that every time average over the behavior of

the system can be replaced by the average over the different states.

If, for instance, the energy of the system is fixed within a range AJE?,

and if we want to know the average value of any quantity which is a

function of the momenta and coordinates A(p,g), we can obtain it by

summing the average value of A for each quantum state over all states

compatible with the energy, and dividing by the number of states.

A level which is ^-fold degenerate, that is, which consists of g states,

is q times as probable as a single one; one says that the level has the

statistical weight q,

A proof of the theorem of equal probability of single states can be obtained

in the following manner. Assume that we have very many identical, inde-

pendent, large systems. We shall have to consider this case frequently later,

and we shall call it an ensemble ’’ of ST^stems. In the ensemble the large

systems play the same role as the subsystems (molecules) play in the gas.

Let r, s, etc., denote quantum states of the large system compatible with a

definite energy, which shall be the same for all the systems of the ensemble.

At a given time, a certain number, JV,, of all the systems will be in the state

r, iV^g in the state s, etc. We wish to prove that in equilibrium Wf - Afg, that

is, that the number of systems in aU states is equal. Since the average over

the numerous systems of the ensemble must be the same as the time average

over one syistem, we will have obtained the desired proof.

The number of systems in the state r decreases on account of transitions

from this to other states, and increases because systems in other states go over

into the state i. The total change of ATr is given by

Af ““ATg^C^n + ZilATgU^gr,

or, using the principles of detailed balancing, w„ « w„f (36),

(2. 37) Wf s* SwggfATg — Nf),

In equilibrium the change with time of all the N% and therefore the left-hand

side of these equations, must be zero. The relation ATg — Ng equals zero, for

all values of s and r, is obviously a sufficient condition for this. We have as

many homogeneous linear equations in the unknowns ATf as there are states,

and therefore unknowns. These equations, however, are not independent

since the total number of totems, ^ fix®dr The determinant of the coef-

ficients of the AT’s is equal to zero. However, if the determinant of the coef-

ficients of (ATg — Nr)j that is, of the u^, differs from zero, the only possible

solution of (37) is that all the N*b are equal.

This also be diown in the manner of Jordan.* We will assume that not all

• P. Jordan, Statiatisehe Mechanik aufquanUrUheoretiacher Grwndlaqt^ Braunsehweigv

1938.
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the N*b are equal and show that this leads to a contradiction. The N*b can be

ordered according to their size, so that ATi ^ Ns ^ Na ^ . The first I of

the N’s may be equal. At least one of these I states, r, must have a transition

probability different from zero to a state 8 for which N, < Ni, since otherwise

the system would not be ergodic. The equation for the change of the number
of systems in this state is

Eveiy' term in this sum is negative, and one at least is not zero; therefore,

certainly, A' r is less than zero, in contradiction to the assumption of a stationary

distribution.

The ergodic hypothesis is essential for this proof. If we had two groups of

quantum states denoted by r, 8 and p, a, respectively, such that no state of one

group can ever be attained from any state of the other one, Wtp = 0 for all r and

p, the determinant of the w*s is zero. We have the additional relation that

the number of systems in each group remains constant, and we can conclude

only that in a stationary state the number of systems in every one of the quan-

tum states of the first group are the same, AT, »» and also those in the sec-

ond one, Nf, = Np, but A\ — ATp, the difference of number of systems in a state

of the first and a state of the second group, can have any desired value.

2j. Liouville Theorem and Equal Probability in Phase Space

In classical mechanics the state of a system is defined by the values

of all the coordinates and momenta, that is, by a point in phase space.

The quantity analogous to the number of states whose energy lies in a

region AE is here the volume of phase space for which the energy lies

betw^een E and E + AE, that is, the volume of the space between the

two energy surfaces E and E + AE, As mentioned before, this volume
has the physical dimensions of energy multiplied by time to the power/.

Since it is more desirable to use a dimensionless quantity, one divides

the volume by a constant of the same dimensions. A number which
has correct dimensions is h^. For small values of AE, the volume,
measured in units of h^, becomes proportional to AE, and we shall

denote it by W{E) AE:

(2. 38) W{E) AE = (1/A{) times volume of phase space for which the

energy lies betkveen E and E + AE,

This definition of W{E) corresponds to the quantum mechanical
definition of U{E), given in section 2i, since the quantum states are

packed into the phase space in such a way that to each state there
corresponds the volume h^.

It must be borne in mind, however, that the classical function W(E)
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is truly continuous, whereas the number of quantum states of an energy

region can only be approximated by a smooth function H{E). There-

fore, if the states of the system are not close together (as, for instance,

in an oscillator), quantum-mechanical and classical calculations will

differ. An additional essential discrepancy between classical and
quantum-mechanical W(E) and Q(S) occurs, however, in the case of

identical particles, treated in section 2k.

The fundamental property which distinguishes the phase space, the

space of the momenta and coordinates, from all other conceivable

spaces in which the motion of the system could also be represented, is

the conservation of volume of phase space during the motion, expressed

in the Liouville theorem. Each point in phase spac^e defines a state of

the system which determines its future unambiguously; in time the

system, and therefore the point representing it, move along a com-

pletely determined orbit. All points originally in a region a of volume

Waj in phase space, will have moved in the time t into a region b of vol-

ume Wb* The Liouville theorem states that Wa == Wh-

As an example we may consider a point of mass m with one degree

of freedom only, moving under the influence of a constant force F.

The solutions of the equations of motion are

mx - p - Ft + p,

where p and x are two integration constants, the initial values of p and

X. Elimination of t out of these equations gives p as a function of x,

that is, the path in phase space going through the point p,£. These

paths are parabolas having the x axis as major axis. This result would

have been obtained more quickly by the consideration that the possible

paths of a one-dimensional system coincide with the lines of constant

energy, in this case (p^/2m) — Fx = E,

Let us now consider all points p, x, within a region of phase space,

for instance, within the rectangle a ^ p ^ a + Aa, j3 ^ x /3 + A|8,

with volume Wa = Aa • AjS. After the time f, these points have gone

over into the region determined by

Ft + a p^ Ft + a + Aa,

Ft^ it Ft^ it— + - + i9 + A^,
2m m 2m m

* Provided that the orbit is a continuous function of the initial conditions.
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or, changing the latter inequality by introducing p instead of p,

pt Ffi pi Ft®— + ^ — + i8 + A/S.m 2m m 2m

This means that the points p, x all lie in a parallelogram the edges of

which are pven by the four lines

p - Ft + a,

X —
Fl^ I

p = W + a + Aa,

Ft^ i

This parallelogranii see Fig. 2. 2, has the base A/3, height Aa; the sides

are inclined against the base at an angle 5 with tan 6 = m/L Th)e area

Positions

Fig. 2. 2. Motion of point particles under the action of a constant force. Parabolas

represent paths in phase space.

of the region is independent of d, namely, Aa A/3, identical with that

of the original region.

The theorem of conservation of volume in phase space may be mathemati*

cally expressed in the following way. The volume of a certain region is given by

Wt =/•/ dpi • • • dpfd^i • • • dj/,

a ^-fold integral. After a time t, systems whose states correspond to the

points on the boundary of the region have gone over into other points, also
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enclosinfi; a region. The integral over the region of space with these new
boundaries may be denoted by

W(t) —
J*

••• j* dpf - - dpfdqi* • • dqf.

We wish to prove that dW/dt * 0. This can be done by the method of Gibbs.

The region may be assumed to be small and bounded by planes of constant

values of the coordinates and momenta. Let us consider first the change of

volume due to the motion of two of the boundaries, say those bounding

Pi by pu ^ Pi ^ piu. In the small time interval dt a point of the upper

boundary will have moved by the amount piu dt, increasing the volume if

P\u is positive, a point of the lower one by the amount pu dt, decreasing the

volume for positive pu. The total change due to the motion of both boundaries

is the difference between these two effects and therefore depends essentially on

the difference between and pit. We can replace this difference by

dpi/dpi dpi, and we find that the change of volume due to the motion

Pii

of these two boundaries is

J*
••• dpi ••• dpf dqi ••• dq/ dt.

Obviously, the change due to the motion of the other arguments, whether p’s

or q’s, can be obtained in exactly the same manner, so that the total change of

W in the time interval dt is

(2 . 39 ) f-SMSPv Bqp/

Changes of volume due to the effects at the edges of the rectangular region

contain a higher power of the small quantity dt. From the equations of motion

in the Hamilton form, (10), it follows inunediately that each term under the

integral is zero, since we have that

dp^ dq^

The integral is therefore zero, and we find that

The Liouville theorem is essential for the complete understanding

of the uncertainty principle discussed in section 2e. If at one time the

coordinate of a particle is known within an accuracy Ag, the momentum
within a range Ap, in agreement with the uncertainty principle, the
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predictions that can be made for the future are neither more nor less

accurate than the initial uncertainty, namely,

Ap • Aq Ap • AQ ^ ^ •

We may also state the liouville theorem in the following equivalent

manner: if we have several, say N, identical systems, and if at a time t

their states fill a part of the phase space with a certain density, they

will, after a time t, have moved to a different part of phase space corre-

sponding to the same energy, which they fill with the same density.

To proceed, we have to make here, as in the quantum-mechanical

case, the ergodic hypothesis that, starting from any given volume ele-

ment of phase space, every other region of phase space of the same
energy is eventually reached by the system. Under this assumption

the stationary distribution of N systems in phase space will be that of

equal density. If this distribution is once obtained, it will not change

in time, and it is also the only distribution which has this property if

the systems are ergodic.

Returning to one system, this implies that the state of the system

remains equally long in equal volumes of phase space, since otherwise

there would occur an accumulation of systems in regions where the

systems dwell longer. The probability of finding the system in a region

is proportional to the volume of that region, or eqiial volume elements of

phase space are equally probable. The time average over the motion of

the system can therefore be replaced by the average over the volume of

phase space.

This is the classical equivalent to the quantum-mechanical theorem

of equal probability of single states. The great analogy between these

two theorems is obvious: since the quantum states lie with constant

density throughout the phase space, the quantum-mechanical theorem

also gives equal volumes of phase space the same statistical weight.

The regions in phase space which will concern us most are those between

two neighboring energy surfaces, namely, the W {E) AE of equation

(38) or its quantum-mechanical equivalent, the number of states with

energy between the same values, il{E) AE. These two quantities are

essentially equal (except in the case of identical particles) if the energy

range AE is sufficiently large so that AE/f, the range per degree of free-

dom, is large compared to two neighboring quantum states differing

only by unity in the value of any one quantum number.
Whereas the assumption that the system is ergodic is, to say the least,

somewhat artificial in classical mechanics, it is more natural and more
real for a quantum-mechanical system. It can actually be demon-
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strated that a classical system cannot be truly ergodic. In view of this

it is necessary to define quasi-ergodic behavior in a somewhat more
complicated manner than here, and to assume that all classical systems
follow this behavior, in order to deduce the laws of classical statistics.

A quantum-mechanical system, however, can be truly ergodic, since

only a finite number, Q, of cells is available to it at one energy.

Of course, the classical theorem was known long before quantum
mechanics. In fact, the agreement between the two methods is not at

all accidental, since quantum mechanics was created with the importance
of phase space and the statistical considerations as guiding principles.

Quantum mechanics lias the essentially statistical characteristic of pre-

dicting probabilities rather than certainties. For this reason it seems
particularly adapted to be the foundation of statistical mechanics, and
the law of equal probability of single states is a more direct consequence

of quantum mechanics than the equal probability of phase space is of

classical mechanics.

2k. Identical Particles, Einstein-Bose and Fermi-Dirac Systems

Let us assume the system to consist of two or more identical inde-

pendent constituent systems, which we shall for convenience call par-

ticles, and let the states of the individual particles, which will be called

cells, .since they may be regarded as forming cells in the juHspace, be

denoted by the quantum numbers k. An example for this is provided

by several point particles moving in the same field-free space. It

appears at first sight that now a new degeneracy occurs since the state

in which particle 1 has quantum numbers ki, particle 2 quantum num-
bers k2 ,

has exactly the same energy as the one where the particles are

exchanged, that is, where 1 has quantum numbers k2 ,
2 has ki. For

truly identical particles, however, these two possibilities have to be

counted as one only, and for more identical particles correspondingly:

all states of the total system which can be made up out of each other

by permuting the particles within the cells have to be counted as one

only. This means that a state of the total system is fully determined

by giving the number of particles in each single-particle quantum cell,

k, instead of the cell in which each particle is. For this it is necessary

that the particles be not only alike, but absolutely identical, so that

there is no conceivable experimental way of distinguishing among them,

and, therefore, among the different states that are counted as one.

The reasons for this are intimately connected with the fact that linear com-

binations of eigenfunctions belonging to the same degenerate energy level

describe the state just as well as the original functions. Instead of the eigen-

functions which definitely denote which particle is in which cell, namely, the
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products of eigenfunctions of the independent partioles, we can form linear

combinations of products of this type, namely, of all those that originate

from one product by permutation of the particles. For two particles, the two

products are ^i(l) * ^ks(2)i and * ^i(2}. The linear combinations,

which no longer have as simple a meaning as the products, are also possible

^ functions of the same energy value. Outstanding among these are the

symmetiic ” and the antisymmetric," namely, one that remains unchanged,

and one that changes sign upon the exchange of any two particles. For

two particles, these are • ^,(2) + ^(1) • ^i(2)], and

ifa • ^(2) — ^,(1) •
1^,(2 )]. Since all outer influences and all

inner interactions act absolutely symmetrically on all identical particles, a

linear combination will keep its symmetry character under all perturbations.

A 83anmetric function remains S3rmmetric, an antisymmetric one antis>m-

metric, forever. In other words, the probability of transition of the system

from a symmetrical state s, that is, a state with a symmetrical eigenfunction,*

to any other state, r, is zero, unless the end state, r, is also a symmetrical'^state.

The corresponding statement holds true for antisymmetric states. Therefore

the symmetric states alone form one ergodic system, as do also the antisym-

metric ones. All identical particles of one kind, for instance all electrons, will

at one time have been in either a symmetric or an antisymmetric state, and

therefore will always remain in states of the same symmetry character. We
then have to exclude all other mathematically possible eigenfunctions in count-

ing the number of states available to the system.

Obviously, the law of the occurrence of symmetric and antisymmetric states

is valid not only if the particles are independent, but also if there is any kind of

interaction between them. In that case, the quantum mechanically calculated

eigenfunctions of non-degenerate levels automatically have some symmetry
character, and only those which are either symmetric or antisymmetric in all

particles are realized in nature. The transition probability from the naturally

occurring to those of the wrong symmetry character are always zero, so that the

* In general, the symmetric function is constructed by adding all n ! eigenfunctions

obtained from the original product by a permutation of the n particles and dividing

by the proper normalization factor, (n The antisymmetric one is formed by
multiplying each eigenfunction by (—1)* before adding, where a is odd or even

according to whether the permutation of particles in question consists of an odd or an

even number of transpositions. This is the same as expressing the antisymmetric

eigenfunction as a determinant

^ki(l) iAki(2)
• * • W

^Ak^d) ^*(2) • •
• ^kj(n)

= (n

^n(l) ^kn(2) • • •

Since a determinant is zero if two of its rows or columns are alike it is seen that

vanishes identically if two of the functions are the same.



Bq.2.89] SYMMETRIC AND ANTISYMMETRIC FUNCTIONS 65

fact that we have to rule out a certain number of states influences the others

in no way. We will encounter this phenomenon, for instance, in the rotation-

vibration levels of diatomic molecules composed of identical atoms, where
alternate rotational levels have different symmetry character, so that only half

of the states occur in nature.

The question whether for a given kind of particle the symmetric or antisym-

metric states are realized cannot, of course, be answered by theoretical con-

siderations; for this it is necessary to investigate the symmetry character of

the observed states. Now, the difference of possibilities, 1, symmetrical, and

2, antis3mimetrical, is essentially this: it is always possible to construct exactly

one linear combination of the product eigenfunctions discussed above, which

is symmetrical in all particles. An antisymmetrical eigenfunction, however,

can be constructed only if no two of the single-system eigenfunctions are alike,

that is, if no two particles are in the same cell. Particles with antisymmetric

states, therefore, satisfy the Pauli exclusion principle, which postulates that

there is never more than one particle in a given single cell.

Investigations of atoms and nuclei have shown that all elementary material

particles, namely, electrons, protons, neutrons, and neutrinos, fulflll the exclu-

sion principle. The radiation of the black body (Chapter 16) shows that light

quanta have symmetrical eigenfunctions only. The behavior of composite

systems, that is, nuclei, atoms, and molecules, can be deduced from the laws for

the elementary ones. If the subsystems are composed of n elementary particles,

permutation of two subsystems amounts to n transpositions of elementary

particles and, therefore, since the permutation of each pair of elementary par-

ticles multiplies the eigenfunction by —1, must multiply it by (—1)". If n is

even, this means that the eigenfunction is unchanged upon the exchange of two

subsystems, or it is symmetrical. If n is odd, the eigenfunction is antis3m-
metric in the subsystems.

Systems composed of several independent truly identical subsystems

fall into two groups, depending on the nature of the subsystems:

1. Einstein^Boae systems {symmetrical eigenfunctions). The particles

or subsystems are indistinguishable. Eigenfunctions of the total sys-

tem which differ only in a permutation of the subsystems have to be

counted as giving rise to only one quantum state of the total system.

All configurations of the total system which differ only in being permu-

tations of the subsystems among the cells or quantum states of the sub-

systems have to be counted as one only. Therefore, a state of the

total system is determined if the number of subsystems in every cell or

quantum state of the subsystems is known.

light quanta and all atoms and molecules composed of an even

munber of elementary material particles form Einstein-Bose systems.

2. Fermi^Dirac systems {antisymmetric eigenfunctions). A state of

the total system is defined if the number of subsystems in every cell or

quantum state is known, as under 1. In addition these systems obey
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the Pauli exclusion principle, which states that there is never more

than one subsystem in each cell.

Fermi-Dirac systems are formed by all elemental^ material par-

ticles/ that is, by positive and negative electrons, protons, neutrons,

and neutrinos, and furthermore by all subsystems composed of an odd

number of elementary particles.

With these two types of systems which are realized by atoms and
molecules we want to contrast a third which is not, namely the com-

posite system we would have obtained had we disregarded the prin-

cipal identity of the subsystems:

3. Boltzmann systems. A state of the total system is defined by the

quantum states of each constituent subsystem.

This latter method of counting the states of the system corresponds

to the classical one, since the volume in phase space, measured ih units

of between two energy surfaces E and E + AE is equal to the\num-

ber of states in the Boltzmann system. It is applicable only if aU sub-

systems are different and distinguishable in principle, as for instance

billiard balls are, which could be painted in different colors. No
identical subsystems of molecular size form Boltzmann systems.

It is interesting to compare the number of states for the three types

of systems. If all N identical particles happen to be in different states

this gives rise to one state in the Fermi-Dirac or Einstein-Bose sys-

tems, but to N ! states in the Boltzmann system, since the N ! permu-

tations of particles in the cells are counted as different states.

If some cells contain several particles this still corresponds to exactly

one state of the Einstein-Bose- system, is never attained at all in the

Fermi system, and corresponds to somewhat less than N ! states in the

Boltzmann system, since a permutation of particles which are in the

same cell does not lead to a different state of the total system. If all

particles are in the same cell this means one state for the total Einstein-

Bose as well as the Boltzmann system.

Particles which form Einstein-Bose, Fermi-Dirac, or Boltzmann

systems would have differing numbers of states consistent with a given

energy, even if the cells or quantum states of the individual particle

had the same energy in all three cases. There would be more states in

the Einstein than in the Fermi system. The Boltzmann system would

have somewhat less than N ! times as many states as the Einstein sys-

tem, and somewhat more than N ! times as many states as the Fermi

system.

The number of states of the Boltzmann system is always arbitrarily

* The heavy rieetron may posnbly be an elementary particle obeying Emetein-

Bose statistieB.
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divided by N !, and in the future it will be understood that this divi^on

is made when Boltzmann systems are referred to. This division of the

phase space by the factorial of the number of identical particles occurring

had been undertaken in classical statistics long before the underlying

reasons had been explained by quantum mechanics. Gibbs, for

instance, found it consistent with the spirit of the statistical method to

count configurations that differed only in the exchange of the positions

of identical particles as being the same.

The number of states for this corrected Boltzmann counting lies

between the number for Einstein and that for Fermi counting. If

there are many indi\ddual quantum states which correspond to the

given energy region, and relatively few particles, verj' few of the total

number of states will have tw'o or more particles in the .same cell. The

numbers of quantum states with energy E, the numbers Q(E) of sec-

tion 2i, then become asymptotically equal for the three kinds of systems.

In general, however, the results of statistical calculations for the three

kinds of systems will be different. One obtains what is called Einstein-

Bose, Fermi-Dirac, or Boltzmann statistics, respectively. We should

like to point out that there is no difference in the statistical methods

employed. The difference lies exclusively in the mechanical model

treated, as discussed above.

The number of quantum states of a system calculated with the

Boltzmann counting that omits the division by N ! corresponds to the

volume of the classical phase space. For real systems, which obey

either Einstein-Bose or Fermi-Dirac counting rules, if Ni identical par-

ticles of type I are present, the number of states available to the system

corresponds to, and under certain conditions becomes asymptotically

equal to, the phase volume W measured in units of divided by the

product of the Ni factorials, HAT, !. If calculations are made using the

classical phase volume, instead of the number of quantum-mechanical

states, we shall always correct the Boltzmann counting by division

with the product of the factorials.

Systems of Einstein or Fermi type cannot be said to consist of strictly

independent particles. The quantum states of one particle are influ-

enced by the presence and behavior of the other particles. One should

say that the particles are mechanically, but not statistically, inde-

pendent. However, for the sake of simplicity, we shall continue to

speak of independent subsystems.



CHAPTER 3

TERMINOLOGY AND DEFlNinONS

(a) The States of a Thennodynanuc System, (b) Forces of a Thermo-

dynamic System, (c) The Distribution of Independent Molecules m
Space, (d) The Concept of a Distribution, (e) The Most Probable Dis-

tribution. (f) Idealised Systems and Inhibitions, (g) Summary.

3a. The States of a Thennodynainic System

It has already been mentioned in section la that the metljiod of

statistical mechanics is applied almost exclusively to systems whiph are

composed of a very large number of particles, and in which, moreover,

usually all the particles are alike or of a few different types. If there

are Ni particles, usually molecules, of type t, each having degrees of

freedom, then fy = EATf/,- is the number of degrees of freedom of the

total system, fy coordinates are necessary' to specify the instantaneous

position of every part of the system, aadfy momenta to specify the state

of motion. The phase space formed by the fy coordinates and their fy
conjugate momenta is referred to as the y-space of the system.

As discussed in detail in Qhapter 2, in classical mechanics one point

in this 2/y-dimensional phase space completely determines the state of

the system, and therefore also its energy. There exists a continuous

range of points, in this y-space, consistent with a single total energy, and

we sometimes refer to such a range as an energy surface.

According to the laws of classical mechanics the specification of the

exact state of even a complicated isolated system exactly predetermines

the state of the system at any definite later time. For the systems

dealt with in statistical mechanics such information would be not only

unpractically difficult to calculate, but valueless if obtained. Even
were a kindly disposed mathematical archangel to undertake the cal-

culation of the exact position and velocity of every helium atom in a

one-iiter flask at standard conditions, for some definite future time, we
would be far too uninterested and lazy to even read the tediously long

information handed to us about every one of the 10^^ atoms.

The fact that all real systems obey the laws of quantum mechanics,

according to which the coordinates and momenta cannot be spedfied

exactly at the same time, does not alter this at ail. The most exact
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location of the system in the 7-space which retains physical significance

is the statement that the system is in one of a network of adjoining ceUs,

each of volume Each cell correjsponds to a state of the system, and

is defined hy fy (jaantum numbers. If the system is known to be in a

certain state at a definite time, the laws of quantum mechanics make
possible, in priucLple, the calculation of the probabilities of finding it

in any of the other states at any later time. But for a large system

this information is also much too detailed ever to interest us.

The total number of quantum numbers necessary to specify the

state of a system, is completely determined by the specifications of

the system, and the volume in phase space occupied by a state, is

also fixed.* However, the exact choice of the meaning of the quantum
numbers is more or less arbitrary, in much the same way as the exact

choice of the fy coordinates in classical mechanics is not completely

predetermined by the description of the system. That is, the shape

of the cell in phase space of volume determined by the Sy quantum
numbers is more or less arbitrary, and may be thought of as altered

to suit the needs of the investigator in attacking different problems.

However, just as the forces in the system frequently make the choice

of one particular set of coordinates almost imperative, so also the most
convenient set of quantum numbers for a particular problem is usually

pretty definitely determined.

If in future discussions wc speak of the state of a system this may be
interpreted as meaning either the quantum-mechanical state, or the

classical point in phase space. In the second case the expression num-
ber of states ” has to be read as volume in phase space.” This volume
is alw^ays assumed to be measured in units of and to be divided by the

product of the factorials of the numbers of identical particles occurring.

The general statistical laws can be built up equally well on either con-

cept. In fact, as the discussions in sections 2j and 2k suggest, for

many systems the numerical results will be the same with quantum or

with classical calculation.

Unfortunately, in thermodynamics the same word state is used in

a different sense. For this concept we shall always explicitly write

” thermodynamic state.” The thermodynamic state of a system is

described by a very few observable quantities. The specification of

only two variables determines the thermodynamic state of a one-

* This does not mean that the possible values of p and q for each quantum state

lie within a sharply bounded region of size in the 7-Bpace; there exists a finite,

although small, probability that the system will be observed outside. For many,

n, adjoining quantum states, however, the volume of the range of reasonable prob-

ability for the p's and g's approaches asymptotically
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component system, a system consisting of only one kind of particles.

The two which have the most obvious mechanical significance are the

volume and the energy. All other observables, the pressure and tem-

perature, for instance, may be expressed as functions of these two.

Extremely many mechanical states of the system correspond, then, to

fixed values of these two quantities, and we know from section 2i that

an ergodic S5\stera reaches each one of these states with equal probability.

It is our aim to obtain relationships between the experimental observ-

ables of a system, to be able to predict that a system of given com-

position, given volume, and total energy exerts a certain pressure on its

surroundings, and will have a certain temperature, entropy, and free

energy. The accomplishment of this falls naturally into two steps.

The first one is the identification of the thermodynamic properties with

mechanically defined quantities, and the derivation of the general laws

of thermodynamics. The second step, which reaches further than the

scope of pure thermodynamics, consists in the numerical evaluation of

the thermodynamic properties of a given system from a knowledge of

its mechanical nature. Such calculations shed light on the atomistic

interpretation of microscopic phenomena. For instance, in section Id,

we have seen that the pressure exerted by a gas on the walls of its con-

tainer is due to the impacts of the molecules.

3b. Forces of a Thermod3rnamic System
If a completely defined systeni is in a fixed quantum state r the most

probable or expectation value of any property that is a function of the

coordinates and momenta j4(p,^), can be calculated from mechanical

consideration. Let us designate this value by A,. However, it is

hopeless to undertake the determination of the exact quantum state for

a large system. If the total energy E and therefore the macroscopic or

thermodynamic state are determined, a large number of quantum
states, designated in section 2i by Q, are available to the system. We
know further from section 2i that all these states are reached with

equal probability by an crgodic system. It follows that the time average
of a property A of a macroscopic system is the same as the average
taken over all quantum states consistent with the energy'', namely, the
sum of A, over all D quantum states r, divided by SI,

f3. 1) A =
r = 1

If X denotes an outer variable of the system, for instance, the volume
or OIK* of the strain components defining the shape of a rigid solid, the
quantity —dE^/dx is the generalized force with which the system in
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the quantum state r resists an infinitesimal decrease in *, or the force

which must be balanced from outside to prevent x from increasing.

The average value of the force is then

(3.2) F, = -Q-»
dx

In particular, if the outer variable z is chosen to be the volume V, the

force resisting a decrease of V is called the pressure, P, and we find

(3. 3) P
fir-l dV '

Assume that a very small but finite change, Ax, in the outer variable

X is undertaken so slowly that the change does not induce transitions.

(A process of that type is called adiabatic in quantum mechanics.) If

the system is in the state r the corresponding change of energy is given

by

dE
(3. 4) AE, = Ax.

dx

Now if the change is made even slower, so that the system makes many
quantum transitions during the process, as in any natural process, the

total energy change is again the average of the above quantity taken

over all quantum states available to the system.

1 1 t^E
(3.4') = —'Ax.

lit ""I OX

Obviously, to have any physical significance, the energy change AE
must be larger than the uncertainty hE in the energy of the system.

We wish now to prove that in a process like this the number of quan-

tum states Avith energies below that of the system remains constant.

In other words, the number of states of the system, with outer variable

X, below the energy E, is equal to the number of states below E + AE
if the outer variable has the value x -H Ax and AE is related to Ax by

(4'). E)tpressed mathematically

:

J

^E
' a(x,E) dE = I

a(x + Ax,E) dE.
0 ^0

The proof of this statement is almost self-evident. The change of

energy of the system, AE, is defined by (4') as the average of the

changes of energy of the states near the topmost energy. This means

that, owing to the change in x, equally many states, previously located

below E, have passed to energies above E + AE as states from above
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E to energies below E + AE, This statement, in turn, is equivalent

to saying that after the process the number of states with energies

below E + AE \s the same as the number of states which previously

had energies below E. Q.E.D.

For a mathematical proof the total change in J*0(E) dE can be

split up into two additive parts. The first one is due to the change of

energy at constant value of x, and the second one to the change of x

at constant energy. The first constituent is obviously

a(£?)^ A* = fl(B) i 'if^ Ax.
dx A2r»l OZ

The second contribution is due to the fact that states at the boundary

E cross this boundary on account of the change in x. Since an increase

in energy of such a state takes it out of the energy region in question

and therefore decreases J'Q(E) dE bv unitv this leads to a change in

fQiE) dE by

Ax,

summed over the states with energy = E. The number of these

is Q(E). Their average change of energy is the same as the average

energy change of the states available to the system at the energy E
(since the uncertainty of energy 8E is assumed to be small compared

to AE). The second part of the change of J'Sl(E) dE is then

5,5

which precisely cancels the first. Equation (5) is thereby proved.

It follows from (5) that, if two energy values Ei and E2 of the total

system are altered to E[ and E2 ,
respectively, by the small and slow

variation of an outer variable, the number of states between Ei and E2

is the same as that between E{ and £2 .

Conversely, if a variation of an outer variable x leaves the number of

quantum states below the energy of the system unchanged, the changes
of E and x must be connected by (4). We can, therefore, using (2),

write (4) in the form

(3. 6)
\dx / C C r »

1

dx
•'0

the generalized force with which a system resists a decrease in x is the
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negative of the derivative of the energy with respect to x at constant

J Q{E) dE. In particular, the pressure P is
0^0

(S. 7)
QCJEO dE

•'n

From (1) it is seen that it is possible to predict only average values

of the properties of the system. Owing to the tremendously large

number of states these average values are the ones usually found by
experiment. Correspondingly, there is a significant difference between
the thermodynamic laws, which we wish to develop, and the laws of

other fields of physics, say those of mechanics. In these other fields

the predictions are made with complete certainty; all cases must be

expected to behave experimentally in exact agreement with the pre-

dictions of the calculations if no error has been made in the assump-

tions of the nature of the system. The thermodynamic laws, on the

other hand, are predictions only of the most probable happenings.

Fluctuations may and will occur, the magnitude and probability of

which may be calculated. That appreciable deviations from these laws

occur very seldom is due only to the very large number of particles,

which makes such deviations very improbable.

This difference between statistical mechanics and what is usually called

mechanics has been largely eliminated by the discovery that the classical

mechanics is only an asymptotic approximation to the more exact quantum
mechanics, the laws of which give merely the probabilities of certain happen-

ings. In view of this the predictions of classical mechanics must also be

regarded as giving only a result of enormous probability.

That tlie laws of thermodynamics merely predict occurrences of

enormously high probability can be seen clearly by considering the

example of the perfect gas treated in Chapter 1. The mechanical

system consists of N independent mass points moving in a given volume

V. If volume and energy of this one-component system are given, the

thermodynamic “ state ” is fixed. Thermodynamics, then, predicts

that the system will exert a uniform pressure on its surroundinge,

determined completely by the energy and the volume.

If we examine the mechanical behavior of this system, it is imme-

diately obvious that, among the extremely many states consistent with

the given outer variables, volume and energy, there are many that give

rise to completely uneven pressure on the walls; for instance, it is

mechanically possible that the velocities of all molecules lie in the same,

say the x chrection, giving rise to zero pressure on all but one wall!
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Moreover, we arc assured by the Liouville theorem that there exists a

definite, non-zero, probability of the system’s reaching this region of

the phase space. However, it is quite evident that an occurrence of

this extreme nature will be extraordinarily rare; the region of phase

space corresponding to it is veiy small compared to the total region

consistent with the given energy.

In section Id the well-known thermodynamic relation between the

pressure, volume, and energy was derived on the basis of two assump-

tions: that the velocities of the molecules were distributed evenly in all

directions, and that the molecules were distributed in space with con-

stant density. We are going to show that these distributions ” are

the most probable ones. Indeed, on account of the very great number
of. molecules they are overwhelmingly probable, that is, the probability

of an appreciable deviation from these ‘‘ distributions,” and the^-efore

from uniform pressure and the relation (1. 13), is extremely small. To
demonstrate this we wish to investigate the second of these conditions

more closely.

3c. The Distribution of Independent Molecules in Space

We may consider the volume Y of the perfect gas of section Id as

being divided into M regions of equal volume. If the regions are num-
bered 1,

• •
•

,
• •

•
,
Af, and iV,- is the number of particles in the region

i, then the total number of particles is iV = Obviously, if the
i

regions are too small, that is, if we have about as many volume elements

as particles, the numbers iV,- will vary erratically with time; regularity

can exist only if w^e postulate that M A distribution of the

molecules with respect to the volume regions is then defined by giving

the values of the numbers Ni, the numbers of particles in each of the

regions. We have assumed intuitively in section Id that the most

probable distribution is given by = Nj = AT/M, which means that,

if N is large, the number of particles n in any volume v > V/M is

n = vN/V.

The extent to which we can be certain that the condition of equal

density in all parts of the system will actually be fulfilled in practice

may be estimated in the following manner. Let us, for simplicity, take

M = 2; that is, we divide the container of the AT independent par-

ticles, in thought at least, into two equal volumes, a and 6. We shall

calculate the probability that at any randomly chosen time there would

be (Ar/2) + n particles in the part a and {N/2) — n particles in the b

part of the container. We have assumed that the particles are inde-

pendent, in other words, that no forces exist between them. We shall

proceed classically and assume that the molecules are statistically inde-
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pendent. The chance that any single specified particle would be found
in the a half of the container will be one-half^ inde];)endent of the
positions of the others. The chance that it would be in the b part will

also be on^half. The chance of finding any single completely specified

configuration in which, for each previously numbered particle, the half
of the container m which it is to be found is specified, will be the product
of N one-halves or 2“^, and independently of whether all the particles

are to be found in one half of the container of whether the division is to
be half and half. That is, the chance of finding N/2 + n specified

particles in a is independent of n. This is in analogy to the fact that the
chance of picking up any one completely determined bridge hand is

just as small as the chance of finding a hand of thirteen spades.

However, our interest was not in the chance of finding {N/2) + n
specified particles in a, but in the chance of finding any {N/2) + n
particles in a. We must therefore multiply 2”“^ by the number of con-

figurations compatible with our distribution, that is, with the number
of ways in which N numbered particles can be separated into two
groups of (N/2) -h n and (N/2) — n particles, respectively. This
number is* N \/((N/2) + n) ! ((N/2) - n) !.

The result for the chance of finding (N/2) + n particles in part

a of the vessel, is

(3. 8)
2’^^N\

R . 1,.r^ 1

12 J L2 j

Inspection of this expression shows immediately that it has its maxi-
mum value, ico, for n = 0, as we expected. Since expressions involving

factorials are somewhat awkward to handle one may bring equation

(8) into a different, approximate, form, which expresses its functional

dependence on n more conveniently. Use of the Stirling approximationf
for the factorial, namely, that M ! = immediately

gives the maximum, u>o, in the simple form

2r^N ! /2\^^^ 1

“ (lJv72iT7 “w (JV)*'*'

The ratio of w„ to u>o is seen to be, from (8),

«»„ _ {lN/2] !
)*

Wo (lAr/2] + n) ! {[N/2] - n) !

N N -2

(3. 10)

iV + 1
2n

1
JV + 1

2n
1

- 2

iV -
I
2n

I
+ 2

iV + 2

* See Appendix A VII.

t See Appendix A IV.
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which lies between the value of two ^ple expresaons

If we define * =
|
2n \/N, then

1 + Jf/ Wo

For * 1, when In (1 + ®) S and therefore (1 + *)‘^^** =
g(w/a)*to(i+*) _ gW/2)**^ IjQtlj upper and lower limits become a83anp-

totically equal to

(3. 13)
Wo

Using (13) and (9), an alternative approximate expression for Wn,

when N is very large and x is very small, is obtained as

-TTifT*' and

against x

(3.14,

Since the integral of dx from

minus to plus infinitj^ is we see

that the sum, or integral, of all the

values of Wn is unity.*

Equation (14) is known as the

Gauss error function, which is plot-

ted in Fig. 3. 1. If any act which

may, with equal probability, have a

result o or a result b is carried out

independently N times, Wn gives the

probability that the result a will be

obtained {N/2) + n times. This

applies as well to the throws of an

unweighted coin as to the problem

with which we started, the distribu-

tion of independent particles between

two equal volumes.

* The approximation of (14) is valid only if z However, for large values of

N the value of Wn becomes negligibly small even for very small values of z. The
integration, then, yields the same value if the limits are taken as z » oo and + «
or as z » a and —5 as long as N 6^/2 1, which may well be true for large enough
values of N even if a <C1.
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The quantity x = 1 2n |
/JV is the fractional deviation of the number of

particles (JV/2) + n in the part o from the most probable number N/2.
The num^r An of values of n included in an interval dx 2An/J\r is

An = dx so that the chance of finding a distribution lying between x
and X + dx will be

1
(3. 15) w. dx =

j
dx

,

and the chance of finding a distribution of fractional deviation from
the equilibrium greater than z in either direction will be

(3.16) w(>e) =
2j^ X

Values of w(>z) for different values of N and z arc tabulated in

Table 3. 1. It is seen that^ for a liter of gas at standard conditions

(P = 1 atm., T = 273.1°K. = 0.0°C.), for which N ^ lO^^, the chance

of finding a deviation of more than one part in a million from the normal

in one-half of the flask is only one chance in 10”"^®“.

TABLE 3. 1

Values of u;( > 2} for different values of z and N.

w(>z) is the probability of obtaining a greater than z fractional deviation from

equality in the number of results from N independent performances of an act capable

of having two results of equal probability.

«>(>*)

N 10-2 i(r’ lOr* KT* i(r»

1B
0.157
10“*^^

10~4340

10“ 10^

lO-io*

Mm 0.989

0.887

0.157
10-44

10-4340

0.887

0.157
10-^^

0.887

0.157
10-10“

0.887

The quantum-mechanical attack of the problem may be undertaken in two
ways. A division in the volume of the system may be introduced and there-

fore the quantization done in such a way that each quantum state of the sys-

tem corresponds to a definite distribution. Or one may use the quantum
states of section 2g, example 1, corresponding to the total volume, in which

case each state can give rise to any distribution. For each state the prob-

ability of finding certain molecules in certain regions of snace can be calcified
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immediately owing to the physical significance of the eigenfunction namely,

by integration of
| ^ over the regions in question.

If the molecules of the perfect gas were statistically as well as mechanically

independent, so that we could use the product eigenfunctions of section 2h, the

probability of finding a specified molecule in a part v of the total volume V is

v/V, just as in the above consideration. If, on the other hand, we have

Einstein-Bose statistics, and have to use S3rmmetrical eigenfunctions, a certain

statistical attraction is present; for Fermi-Dirac statistics, a statistical repulsion.

The considerations which lead to the proof of the prevalence of equal density

remain essentially unaltered since the factor N \/({N/2\ + n) ! {{N/2] — n) I

arising from the number of ways in which, out of N particles, {N/2) + n can

be put into one box and {N/2) — n into another box enters here too, and its

dependence on n is strong enough to overshadow completely any other effect

that might be present.

3d. The Concept of a Distribution

As we have seen already in the last two sections, it is very often found

useful to introduce a description of the instantaneous configuration of

the system which is intermediate between the very detailed one of the

mechanical and the very broad one of the thermodynamic state. Such

descriptions shall be designated by the somewhat general term of

distribution. Extremely many states correspond to one distribution,

but many distributions are consistent with the same energy. Or,

every point in phase space belongs to a certain distribution. The region

of phase space consistent with any distribution is large compared to

that of one state, but may be small compared to the total region of

given energy.

In Chapter 1, and in the two previous sections of this chapter, we have

used the term distribution and encountered two different types of dis-

tributions of molecules for the same system, the perfect gas: namely,

the distribution of molecular velocities over the different directions, and

the distribution of molecules in space. In the second, which was dis-

cussed more carefully, we saw that the concept was a useful one only if

the subdivision of space considered was large compared to the volume

per molecule. If this is so, one distribution corresponds to a much less

detailed description of the configuration than the location of each

molecule in space. This criterion of a distribution, that it be not too

detailed, is just what we wish to postulate generally.

Other distributions vrhich we are going to consider are those of mole-

cules in different ranges of kinetic energy; or of energy between two

specified parts of the system'; or, if we have atoms capable of forming

various types of molecules, the distribution of atoms between the dif-

ferent molecular species.
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On account of the varied types of distributions which are important,

a general definition of the word can hardly be given. All distributions

will, however, have this characteristic: a subdmsion of the system, or

the phase space of the system, into different parts is undertaken in

thought, with the restriction that it be not too fine, so that the parts

are not of molecular dimensions. The subdivision may be of a type

that can easily be obtained experimentally, as the division of volume
into se^'eral parts, or a separation of the different molecular species. It

may just as well be such as to be realizable in thought only, that is,

impracticably difficult to obtain experimentally, as for instance a divi-

sion of the M-space, the phase space of the individual molecules, into

regions of different energy (section 5b). A distribution of a physical

quantity with respect to this subdivision is then characterized by a set

of numbers, D, one number of the set for each of the regions, giving the

value of the physical quantity for that region. If the subdivision is

one of volume, and the physical quantity is the number of molecules,

one distribution D is given by the numbers of molecules in each volume
region. A distribution of energy may be defined for the same sub-

division into volume parts by giving the energy" contained in each

region.

The subdivision may be in the M-«pace, the individual regions con-

sisting of all those molecules with kinetic energies lying in certain

ranges, and the distribution defined by the numbers of molecules in

each kinetic energy range. This type of distribution is investigated

in the treatment of the monatomic perfect gas, sections 5b and 5c.

At any instant the system will be in some distribution D; in time its

configuration passes over into other distributions with respect to the

same subdivision.

Instead of the division of the system into many parts, one may
always consider the distribution between any one of the parts and the

rest of the system. Since the division is then into two parts only, a

distribution is given by one number D, We may, therefore, without

loss of generality, treat D like a single number.

The number of quantum states 'which give rise to a distribution D
shall be designated by fl/). The sum of over all distributions is

equal to the value of 12 for the system,

(3. 17)
D

It is then immediately possible to calculate the probability of finding

the system in a certain distribution D with respect to a fixed subdivi-

sion. Namely, since the probabilities of all single states are equal, the
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probability of a distribution D is the ratio of the number of quantum
states consistent urith D to the total number of quantum states, Od/O.
In classical language, the probability of a distribution is equal to the

ratio of the volume Wd of all points of phase space for which the system
is in the considered distribution, divided by the phase volume W con-

sistent with the total energy, namely, Wj^/W. If the values of these

two expressions should not coincide the quantum-mechanical one has
to be used.

Obviously, every point in phase space corresponds to one distribution.

We have tacitly assumed that every quantum-mechanical state of the

whole system also belongs to one distribution only. If the distribution

is according to a subdivision into energy regions, this is usually the case.

For others it is always possible to quantize in such a way that each state

corresponds to exactly one distribution (see, for instance, the end\of

section 3c). '

Se. The Most Probable Distribution

Among all the different distributions with respect to a fixed sub-

division of the system we shall denote the most probable one by Do.
This means that the number of quantum states consistent with Do is

larger than that of any other distribution, 12/)^ > 12x). Obviously, a

distribution which differs extremely little from Do has practically the

same Qo. If, for instance, the numbers D defining the distribution are

large integers, a difference of a few units in some of them will not change

D/> considerably. On the other hand, such a neighboring distribution

is experimentally indistinguishable from the most probable one.

It may, and indeed it does usually, occur that one distribution is

overwhelmingly probable in the following sense: namely, that all dis-

tributions differing from the most probable one by a noticeable per-

centage in the number D have a very small probability of occurrence

compared to Do and its neighboring distributions, which are, for all

physical purposes, alike.

We found this to be so in the example of section 3d. If we consider

the distribution of iV = 10^° particles between two equal volumes,

each distribution can be characterized by just one number, D, the

number of molecules in one half of the system. The most probable dis-

tribution is given by Do = JV/2. Distributions differing from Do by a

few units have an 0/, whose fractional deviation from is only a few

parts in N, If we choose AD = 10^*, the most extreme distributions

in this range differ only by about one part in 1(F in density, the quantity

which would be measured experimentally. The probability of finding

deviations from equal numbers in each part by more than 10^^ is.
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according to equation (3. 16), only KT^®*. We find, therefore, that

n-Di+AD

£ On
D«Di-AZ>

L 0/>
D-O

+
DmN
Z) ^Di

D "Dt+AD

or, remembering that the sum of Qj^ over all distributions is Q, the num-
ber of states consistent with the energy,

n^Di+AD Z>->I>i+AD

(3. 18) £ On » a - E 0i>

.

D^Dt-AD D^Jh-HD

In the general case we shall define by AD a range of distributions

which are, experimentally, indistinguishable from the most probable

one. If the inequality (18) holds, it expresses mathematically the

fact that the sum of probabilities of all distributions which are unde-

tectably different from the most probable one Do is very much greater

than the sums of probabilities of all other distributions. In this case,

only, will the most probable distribution be referred to as the equi^

librium distribution. We may then with confidence assume that all

properties of the system are expressed by those of the most probable

distribution, and calculate the thermodynamic relations assuming

equilibrium.

In actual practice the amount of material with which a chemist deals

usually contains such an enormous number of molecules that it is rather

difficult to find a useful type of distribution problem for which condi-

tion (18) does not hold, and in general we shall assume (18) in all prac-

tical problems without proof.

3f. Idealized Systems and Inhibitions

Mathematical abstractions must always be made when the calcula-

tion of the properties of any physical object is undertaken, and the

more complicated the object, the more necessary this becomes. The
naturally occurring system is never treated in statistical mechanics,

but instead an idealized system with properties so chosen as to resemble,

as much as possible, those of the true one. The idealized system has

certain exact and sharply defined characteristics, which are nearly, but

frequently not exactly, realized in the natural counterpart. For

instance, in sections Id and le, it was the aim to calculate the properties

of a dilute real gas, and, instead, the properties of an idealization of a

gas, a system composed of independent mass points, was investigated.

The condition of independence is certainly not strictly fulfilled in the

real gas, but actually the first approximation of the interaction between

molecules was taken into account by considering that transitions

between different quantum states occurred. The transitions between
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states are due to the collisions between molecules, which, in turn, can

be present only if interactions in some form or other are permitted. It

is these transitions which permit us to treat the system as ergodic, and

to assume the equal probability of states, or of equal phase volumes,

and which assure the attainment of equilibrium distributions.

For calculations of equilibrium phenomena, the rate at which transi-

tions take place is usually of no interest. In some natural systems,

however, it sometimes happens that transitions between some groups of

quantum states are very rare. All real systems are presumably ergodic

in the strict sense of the word, that is, they have a finite probability of

attaining every quantum state from every other one, but they may
need a very long time to go over from one group of states to another.

This time may be so long that such transitions simply do not occur

during the course of a physical experiment. The experimental behapor

will then not correspond to complete equilibrium, but to equilibrium

between the states within the group only. In other words, the system

behaves as if it were non-ergodic.

Such groups of states, between which transitions are rare, always

correspond to very different physical pictures of the system, for instance,

to different distributions of atoms between different molecular species.

A drastic example is furnished by the nuclear reactions. Since all

nuclei are built of the same elementary particles, the material contained

in a fiask of hydrogen could also appear in the form of other atoms and
molecules, and hydrogen is certainly not in equilibrium with respect to

these nuclear transmutations, ftobably, in infinite time, the system

is truly ergodic, and transitions to all states consistent with the energy

and constitution would occur, but except at stellar temperatures the

transmutation of the so-called stable elements occurs rarely even if time

is measured in units of geologic periods. In investigating the properties

of any system composed of stable elements, it is more than obvious to

assume these transitions to be strictly inhibited, that is, to treat the

atomic composition of the physical object as given and unchanging.

In other cases, however, the difference in rate between the establish-

ment of equilibrium within a group of states, and between groups corre-

sponding to certain different distributions, is not so extreme but still is

sufficiently obvious to require special treatment. At room temper-
ature it takes years, in the absence of a catalyst, to establish equi-

librium with respect to the reaction between hydrogen and oxygen gases

to form water. Many experimental measurements, such as that of the
specific heat or the pressure, could easily be made on a 83r8tem composed
of oxygen, hydrogen, and water, under conditions where the mixture
was certainly not in equilibrium with respect to the possible chemical



Eq. 3. 18] INHIBITIONS

reaction. The introduction of a catalyst into the system, or a com-
paratively small change in the total energy, and therefore temperature,

would entirely alter the rate with respect to the chemical reaction.

The results of an experimental measurement of some property, say

the specific heat or the change of pressure with volume, on a chemical

system in which a fairly slow chemical reaction takes place, may depend

on the speed with which the measurement is made. If the system is

heated, or the volume changed, more rapidly than the chemical reaction

can establish equilibrium under the new conditions, the measured inflow

of heat, or change of pressure, will be different from what it will be if

the changes are made so slowly that complete equilibrium is established

during the change.

Corresponding to these two different experimental results, it will

sometimes be found desirable to make two different calculations of the

statistical behavior of one system, one calculation in which complete

equilibrium is assumed to be established with reference to some dis-

tribution, and one in which the system is assumed to be inhibited to

remain in one particular distribution.

Among the idealizations which will be assumed in the systems whose
properties are to be investigated, then, one of the most convenient will

be the idealization that the system is inhibited to remain in a certain dis*

tribution with respect to some subdivision. That is, we shall treat an
idealized system which is completely ergodic, and can reach all the

quantum states available to it, but which differs from the natural sys-

tem in that certain whole groups of quantum states which are reached

but slowly by the natural object are regarded as entirely non-existent

in the idealization.

These inhibitions may be used either to eliminate the necessity of

considering transitions never observed in the time at man’s disposal,

such as conceivable nuclear transmutations, or to enable us to calculate

the properties of a system not in equilibrium with respect to some
relatively slow chemical or physical change, or even to calculate the

properties of a system in some distribution, not that of equilibrium, with

respect to some subdivision in which equilibrium is established very

rapidly in the natural system.

By this subterfuge of the introduction of an inhibition upon the

idealized system we avoid the difficulty of explicitly considering non-*

ergodic systems. Perhaps it is more correct to say that the necessity

of calculating the properties of pseudo non-ergodic systems, for which

we can say only that those quantum states which can be reached within

reasonable time are equally probable, forces us to treat idealized sys-

tems subject to certain inhibitions.
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There exists a tendency on the part of some workers to say that thermo-

dynamics can be applied only to systems in complete equilibrium. Strict

adherence to this condition would limit the applicability of thermodynamics

rather severely. Few organic compounds can ever be said to be stable in the

sense that they could exist pure if every conceivable reaction went at an appre-

ciable rate. In view of the existence of nuclear reactions we could even say

that this would exclude the application of thermodynamics to any ordinary

chemical system. The use of the concept of the completely inhibited idealized

system is a convenient artifice to overcome this difficulty. We calculate the

properties of an imaginary system which is in complete equilibrium with respect

to all its possible reactions. This idealized system is then said to correspond

to the real system having other conceivable reactions, with respect to which

tiie rate of attainment of equilibrium is almost infinitely slow compared to the

time interval during which its properties are investigated.

It is a hypothesis, however, which seems very natural and probable,

that all transitions between states that do not differ from each other, in

some marked physical or chemical property, such as the percentage of

different molecular species, occur with sufficient probability so that the

system may be regarded as truly ergodic with respect to all of them.

However, it is to be noted that there have been in the past, and may
possibly occur in the future, some surprises with respect to this hypoth-

esis. For instance, there exists in nature an inhibition making transi-

tions of hydrogen molecules betiveen odd and even rotation states very

slow. Although this effect is actually very readily explained, it would

have appeared most amazing before a fairly complete understanding of

quantum mechanics existed.

The possibility of imposing and lifting inhibitions in an idealized

system offers us another convenience. All occurrences take place at

constant energy of the whole universe. We are, therefore, imposing

no limitation on the general type of processes that we consider if we

limit ourselves to processes at constant energy. All acts on a System,

starting or stopping a process, may then be idealized by regarding them

as the lifting or imposing of certain inhibitions at constant energy, since

the source or sink of energy can always be taken as part of the system.

The attainment of equilibrium with respect to any variable of a real

system from a definite condition of non-equilibrium can always be

described as due to the lifting of an inhibition.

For instance, the act of opening or shutting a stopcock between two

fiasks containing gas may be considered as the lifting or imposing of an

inhibition against the flow of matter between two part volumes.

Similarly, two isolated systems may be treated as one system of two

parts with inhibitions against the fiow of matter and energy between
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them. The physical act of bringing the two systems into thermal

contact would be described as the lifting of the latter inhibition. The

process of allowing the hydrogen, oxygen, and water molecules of the

earlier example to come into contact with a catalyst may also be

described as the lifting of the inhibition prohibiting the chemical

reaction.

3g. Summaiy

The state of a system, the most complete description of its instan-

taneous condition which it is possible to make, is defined, if the system

is assumed to obey classical mechanics, by giving the values of fy coor-

dinates and fy momenta, and if the system obeys quantum mechanics,

by giving the fy quantum numbers necessary to define a cell of volume

in the 7-space.

A system in a certain distribution with respect to the value or values

of some physical variable may be in any of a large number of states con-

sistent with that distribution D. The number of states corresponding

to D is called and since all states have the same a jyriori probability,

the probability of a distribution is proportional to Qj). For macroscopic

chemical systems and distributions with respect to the type of sub-

divisions in which one is interested, the sum of the probabilities of all

those distributions which do not differ significantly from the most prob-

able one add up to a value of practically unity. In this case the most

probable distribution is referred to as the equilibrium distribution.

Idealized systems of sharply defined characteristics are more con-

venient as objects of calculation than the real systems which they are

intended to simulate. Such idealized systems may frequently be

assumed to be subjected to certain inhibitions preventing the change of

the distribution of the system with respect to some physical quantity,

if this change in the real system takes place more slowly than the time

necessary to measure the experimental quantities calculated. The

lifting of such an inhibition corresponds to the starting of a spontaneous

reaction in the real system.



CHAPTER 4

THE DERIVATION OF THE LAWS OF THERMODYNAMICS

(s) Introduction, (b) Characteristics of the Logarithm of 0. (c) The

Quantity S ~ it In 0. (d) Identification of Entropy, Temperature, and

Pressure, (e) The lamits of Validity of the Second Law of Thermo-

dynamics. (f) The Relation between Entropy and the Uncertainty in the

Energy, (g) The Third Law of Thermodynamics, (h) The Conditions

of Equilibrium and the Chemical Potential it.
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4a. Mtrodiiction

In this chapter a quantity S will be defined as fc In Q, in which k is

the Boltzmann constant, and Q, defined in sections 2i and 3b, is the total

number of quantum states available to the system. It will be shown

that S, for a sum of two independent systems, is the sum of their two

S values, and that £ is an extensive property. It will also be shown

that S increases for all spontaneous changes occurring in a system at

constant energy. These are also the fundamental characteristics of

the thermodynamic entropy.

Two quantities, r and t, of the- dimensions oi temperature and pres-

sure, respectively, will be defined as l/V = (3<S/dJ?)y and v/t =

{dS/dV)s. It wrill be shown that r is a monotonous function of the

temperature alone, the same function for all systems, and w a monotonous

function of pressure, the same for all systems of the same r value. In

section 4d it will be demonstrated that t is the pressure in all systems.

It will similarly be shown that t is proportional to the thermodynamic

temperature, and that rdSh equal to the heat absorbed.

The first law of thermodynamics is an immediate consequence of the

laws of mechanics as soon as heat is identified with the kinetic and

potential energy of the molecules and atoms composing matter. The

characteristics of S, discussed in the first paragraph, combined with its

identification as entropy, then prove the second law of thermodynamics

as a consequence of the laws of mechanics.

The number of quantum states available to a system, Q, has a definite

value, so that S fc In Q has no undetermined integration constant,

except the proportionality factor k, which is connected with the arbi-

trarily chosen scale of temperature. This is equivalent to the third

law of thermodynamics, which, in its most general, and possibly only
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correct, form, states that the entropy of a system has a definite natural

value in which the integration constant present in the classical definition

is naturally determined in such a way that S is not large at the abso-

lute zero of temperature.

4b. Characteristics of the Logarithm of Q
The number il is an extremely large number for a macroscopic sys-

tem, so large that even its logarithm, In Q, is of the order of magnitude

of N, the number of molecules of the system. In section 2i we have

defined 12 = Q(E) dE as the number of quantum states available to the

system, in which the natural uncertainty of energy is dE. Since this

uncertainty 5E of energy is somewhat vaguely defined, the value of 12,

which is proportional to 5E, is also but vaguely determined. However,

because of the enormous magnitude of 12 an uncertainty of many fold

in the value of 12 itself still permits the value of In 12 to be determined

within a completely negligible error. Indeed, In 12 is so large that it

makes no numerical difference in its value whether 12 is calculated as the

total number of quantum states below the energy E,Q = f Q(E) dE,
Jo

or as the number of quantum states belonging to some narrow energy

range at the energy E,Q — 12(i?) 8E. This will be discussed in greater

detail in section ^f . For the present we shall retain the definition of 12

given in section 2i, that it is the number of quantum states available

to a system, the energy of which is E, within some definite range of

uncertainty SE.

The logarithm of 12 is a perfectly defined number of considerable

importance in determining the properties of the system.

The first characteristic of In 12 which we wish to emphasize is that of

being additive for independent systems. If there is a system a with

number of quantum states 12a, &nd an independent distinguishable sys-

tem b with 12b, the value of the number of quantmn states, 12a+6, for a
system consisting of the sum of the two independent parts a and b

will be

(4. 1) 12a+b = 12a-«6-

This is self-evident from a consideration of the way in which quantum
states for the system consisting of the two parts a and b are counted.

The quantum state of the combined system is defined by giving the

quantum numbers of the part a and the part b (section 2h), provided

that the two subsystems a and b are distinguishable from each other.

Each state of a can be combined with any of the states of b to form a

state of the total system. It follows that the number of possible states
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of the combined system is the product of the numbers of states of the

two parts.

From (1) we find that the value of In Q is additive for two inde-

pendent systems,

(4. 2) In Oa+6 = In Oo + in 12fc.

For n equal independent systems, In 0 of the whole system is n times

the In il of one of the parts. We shall later show that if the n systems

are united to form one, In Q is unchanged, and is therefore an extensive

property, namely, proportional to the size of the system.

In section 3d we defined the quantity ^ the number of quantum
states available to the system if it w^ere restricted to a particular dis-

tribution D with respect to some subdivision. The probability of the

distribution was seen to be proportional to the value of 12o, and \the

equilibrium distribution Do was defined as that for which i2x) had a

maximum value, the most probable distribution. Furthermore, Ive

agreed not to use the w’ord equilibrium unless the sum of the values of

Q/) for all the distributions differing by a negligible experimental amount

from Do was very much larger than the sum of the for all other

distributions. This is equivalent to demanding that we define our dis-

tributions in such a way that their total number, Mj is small compared

with the total number of quantum states, SI, of the system. Since the

value of the number of quantum states of the most probable dis-

tribution, must be greater than Q/3/, the total number of quantum

states of the system divided by the total number of distributions, and

must also, obviously, be less than Q, it follows that we can write

(4. 3) In n > In > In — In A/.

Now we have assumed that

(4.4) In A/ In 12,

and so we can write as a sufficient approximation that

(4.5) Inf2oo=lnl2.

The logarithm of the number of quantum states of the most probable

distribution is numerically the same as the logarithm of the total num-

ber of quantum states of the system.

We may illustrate this by the calculation for a system which is not, in

the narrow' sense, physical. The system consists of a pack of 2N cards,

N of which are red and N black. A single state of this system may be

defined by giving the color of the card in every position in the pack.
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One state will be that arrangement for which the first card is red, the

second black, the third black, the fourth red, etc. This definition of a

state is analogous to the physical one, since if the cards are not dis-

tinguishable other than by their color it gives the most complete descrip-

tion that can possibly be made of the condition of the pack. Each
state so defined corresponds to {N !)^ arrangements of distinguishable

cards. Honest shuffling of the cards will show each state to be equally

probable. The total number of states, Q, is,

(4. 6)
{2N) !

(N

since it is equal to the number of arrangements of distinguishable cards

divided by the number of arrangements per state (Appendix A VII).

By using the Stirling approximation (Appendix A IV) for the factorial,

we find

(4. 7) In a = 2iV In 2 - i In (ir.V).

Now, if a distribution is defined as the number of red cards, D, among
the first N cards of the deck, it is fairly obvious that the most probable

distribution will be given by the value Do « ^N, in which case there

will be equal numbers of red and black cards in both halves of the deck.

The value of will be the product of the Q*s for the two half-packs,

namely,

f(iV/2)!]^’

(4. 8) In = 2i\r In 2 - In HtN).

The difference,

(4. 9) In S2 - In 12^)0 = 2 (^^/4),

increases with N as the logarithm of N, The value of In Q increases

much more rapidly, indeed, linearly with N. In Table 4. 1 the values

of In n, (In 12 — In 12/,^,), and the fractional error, (In 12 — In 12^o)/ln 12, are

tabulated for various values of N. It is seen that, if the number of

cards approaches that of the molecules in a chemical system, about 10'®

or greater, the percentage error introduced by substituting In 12^)^^ for

In 12, or vice versa, would be entirely negligible. This does not mean,

of course, that 12^)^ equals 12; the ratio of these two quantities is given

in the last column of the table and is seen from (9) to be

We have previously stated that this ratio 12/12/)^ must be smaller than

M, the total number of possible distributions, which in this case is

equal to N, the total number of places in the half-deck.
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Equation (5) which states that the logarithm of the number of quan-
tum states of the most probable distribution may be substituted for the

logarithm of the total number of quantum states of the system has a
great practical applicability. It is frequently far easier to evaluate

In numerically than In In Chapter 5, in which In 0 for a perfect

monatomic gas is sought, the method actually used is to evaluate In

for the equilibrium distribution of energy among the molecules.

TABLE 4. 1

The value of In U and fn for a deck of 2N cards, N each of two colors, if a
distribution is defined by giving the number of red cards among the first N cards.

The most probable distribution is Dq —

N In 0 In n — In fi/>0
In Q - In ftijo

InU

10* 2.18 0.016 8.9
10* 3.34 0.0024 28
10* 1.3868 X 10* 4.48 3.2 X 10“* 89
10* 1.3863 X 10* 9.09 6.5 X 10^* 8.9 X 10*

10“ 1.3863 X 10“ 18.30 1.3 X 10"“ 8.9 X 10*

10** 1.3863 X 10** 27.51 2 X 10-** 8.9 X 10“

Equation (5) has been derived at this place for another purpose,

however. If an inhibition that prohibits transitions between quantum

states belonging to different distributions is imposed upon a system,

the system will be frozen ” into the distribution in vrhich it happens

to be found. As we have seen, the probability is overwhelming that

this would be one which is experimentally indistinguishable from equi-

librium. Indeed we can neglect entirely the infinitesimal chance that

the system will be found in a distribution experimentally different from

equilibrium. After the inhibition has been imposed, the value of In Q
will be that of In Ud for the distribution into which the system has been

frozen. Since this distribution must be one of the probable ones whose

value of In Od is large and approximately that of In ®Do» it follows that

the value of In 12 for the system will be only negligibly decreased by the

imposition of the inhibition. The imposition of an inhibition upcpi a

large system does not decrease the value of In 12 by an appreciable fractional

amount

The closing of a stopcock between two flasks of equal volume will, with

overwhelming probability, result in fixing practically equal numbers of mole-

cules in each flask. If the molecules were different and distinguishable, this

physical act would do much more than limit the ^tem to this most probable
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distribution, for it would trap about iN specified molecules in each of the two
part volumes. This would decrease 0 by the factor i\N) \^/N ! « 2“^, the

logarithm of which, —iV In 2, is by no means negligible. The same holds for

every physical inhibition which affects the distribution of molecules.

Molecules of one species are, in truth, identical and indistinguishable. The
quantum states of systems of many identical particles are of Einstem-Bose or

Fermi-Dirac type (section 2k), and do not specify the location or state of any

particular particle as distinguished from the others. With this method of

counting the states the difficulty mentioned above does not occur.

The problem was solved in classical (Boltzmann) statistics by division of

the phase space by N !. This is necessary in order to show, as we shall do

immediately, that 5 == A; In S2 is an extensive property of the system.

As said in sections 2k and 3a we alwa3n3 use the phase space divided by HiATt*

!

as the classical analogy to the number of states.

If, however, we consider a system under the influence of an imposed

inhibition restricting it to a certain distribution D, and then lift the

inhibition, we see that one of two cases may prevail. Either the dis-

tribution D was one of those indistinguishable from the equilibrium

distribution, in which case no change will occur and the value of In 12

will not be appreciably altered; or, ifD were a distribution far from equi-

librium, one can expect the system to be in a more probable one after a

finite time interval, and In Q would be increased. Eventually, the

equilibrium distribution will be attained. The lifting of an inhibition

will either cause no change in the system, or, if a change takes place, the

value of In 12 will be increased.

These properties are sufficient to prove that 5 is an extensive quan-

tity. The insertion of a material wall, preventing flow of matter and

energy between two parts of the system, is the type of inhibition dis-

cussed above. This process divides the system into two independent

parts. The value of S for the total system, after the insertion, is the

sum of the S values of the independent parts. Since this physical

inhibition does not change S, it follows that, also without any wall:

S is the sum of the values of S for any volume parts, and S is propor-

tional to the size of a homogeneous system, provided that the intensive

properties, such as density and energy per molecule, are kept constant.

We shall frequently refer to the value of In 12 of a system in a certain

distribution D, which will be In 12p. Experimentally, it would be

impossible to measure the properties of a system in a certain distribu-

tion unless we had some method of assuring ourselves that the distri-

bution would be maintained during the course of the experiment by

some hindrance or inhibition against the transition into other distri-

butions. For this reason, when we refer to the value of any property

of the system in a certain distribution Z), such as the value of In 12d, we
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shall always assume implicitly the existence of an inhibition against

the transition of the system into quantum states corresponding to other

distributions.

All changes which can be brought about at constant energy in a sys-

tem without causing a change in the properties of some other system in the

universe may be described by the lifting or imposing of an inhibition upon
the system in question. This has been discussed in detail in section 3f.

We have shown that an operation on an isolated system, which does

not cause a change in some other system, cannot produce a measurable

decrease in the quantity In Q, and that if this operation causes a change

in the original system In Q must increase.

4c. The Quantity S - A In Q
The dimensionless quantity In Q has the most important character-

istics of the thermodynamic entropy. It is an extensive property of ftll

systems and increases for any spontaneous change which the isolated

system undergoes at constant energy. The thermodynamic entropy is

so defined as to have the dimensions of energy divided by temperature.

We shall define a quantity S by the equation

(4. 10) S = fc In Q,

in which the constant k has the dimensions of energy per degree of

temperature so that the dimensions S are those of entropy. We
shall now proceed to prove that the quantity S is proportional to the

thermodynamic entropy. The numerical value of k is at our disposal,

and in C'hapter 5 we shall see that, if it is chosen to be the Boltzmann

constant of value k = 1.3804 X erg per degree Kelvin, S becomes

identical with the entropy.

In Q is the logarithm of the total number of quantum states available

to the system and will be a function of the total energy and of the vol-

ume, as well as being dependent on any inhibitions that may be pre-

sumed to exist.

The quantities r and v are defined by

(4. 11 r ^
\dE/Y T

(4. 12)
/ dS\ IT

W)e “ T

* We are einployinf; here the usual nomenclature of thermodynamics (d/dx)j,^g,

in which the subscripts indicate the variables kept constant during the partial dif-

ferentiation. This device is necessary since the thermodynamic quantities can be

expressed as functions of several different sets of variables, for instance, the entropy as

function of volume and energy, or of volume and temperature, etc. (see Appendix A 1).
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SO that T has the dimensions of a temperature, and ir those of energy

per volume, or pressure, force per area.

Consider any system of fixed total energy, E, consisting of two parts,

a and 6
, of energies Ea and Eb, between which energy can flow, but

which are otherwise entirely independent. We wish to examine the

equilibrium condition for the distribution of energy between the two
parts. If the symbol 8Ea is used to indicate an infinitesimal variation

in the energy Ea of part a, the condition of constancy of the total energy

requires that

(4. 13) E = Ea H" Eb\ hE = 0 = hEa + hEb\ hEa = — hE^*

The value of Sj), for the complete system in a given distribution D,

determined by the value of Ea% is the sum of the values of the part

system.s,

(4. 14) So = Sa + ^6,

Sa being a function of Ea and S^ of £5 . Indicating, by 6S0 =
(dSo/dEa) hEa, the infinitesimal change in So brought about by a

change hEa iu the energy of a, one obtains the equation

' (^) ' (fX'®- + (iX
and, from (13) and (11),

Equilibrium corresponds to a maximum of So, and therefore to

dSo/dEa = 0, which is satisfied by Ta = n- Spontaneous change in

Ea will take place only in such a way that So increases, that is, that

hSo is positive. From (Ifi) it follows that if l/xa > l/n, or To < n,

hEa must be positive, that is, the energy of part a of the system will

grow at the expense of the energy of part b.

We arrive at the conclusion that between any two systems energy

flows spontaneously from the system of higher t value to that of lower

T value, and the two systems will be in equilibrium if they have identical

values of t. The qualitative definition of temperature is just this, that

energy will flow from a system of high temperature to one of low temper-

ature, and will cease to flow if their temperatures become identical.

The condition of equilibrium which we have just found, equal r values,

is also the condition of equal temperatures. Since any two systems

whatsoever that have the same T have also the same value of t, it fol-
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lows that r is the same function of T, and only T, for all systems.

Furthermore, since high T’b correspond to high r’s, we know that r is a

monotonously increasing function of T. In Chapter 5 we shall find

that the energy of a monatomic gas is ZRt/2 per mole, which identifies

r with the temperature in a perfect gas and therefore in all systems.

We shall now investigate equilibrium with respect to the distribution

of volume between two systems. Consider a system of fixed total

energy E, and volume V, consisting of two parts, a and b, with enerpes

and volumes Ea, Eh, Va, and Ft. Energy will be assumed to fiow

between a and b, and the volume of one system may grow at the expense

of the volume of the other, but otherwise the two part systems a and b

are independent, so that no matter may be transferred from a to b. We
shall study the value of Sd of the system as a function of Va$ that is, as

a function of the distribution of volume between the two systems.

As before, we have condition (13) of constant total energy, thbt

BEa = —BEh, and the additional condition of constant total volume,

(4. 17) F = F„ + Vh, BV = 0, BVa = -iFt.

The two parts of the system will remtun in equilibrium with respect to

the flow of energy between them, which, as we have just seen, assures

us that Ta = Tft. The change in Sq, BSd * idSD/dVa)BVa, brought

about by an increase SFa in the volume Fa of part a, will be composed

of two parts, one due directly to the change in volume of the parts, and

the other due to the changes in energy (dEa/dVa) BVa necessary to

maintain equilibrium with respect to the distribution of energy.

(4. 18) BSd
dF, l\SVa/B-©>

LW./v WJvJdF,
«F.

Using (11), and the condition that Ta = t6, the coeflScient of the latter

term is seen to be zero, and with (12) one obtmns

(4. 19) BSo ^^iVa = - (ir„ - n) «F„.
dVa T

If Va » Vh, the system is in equilibrium. The spontaneous change, for

which dSo is positive, will take place with an increase in Va if is

greater than vi, and in the opposite direction if Va <
Two such systems are in equilibrium only if their pressures are equal,

and so we see that any two systems of equal r, and therefore of equal

temperatures, have equal values of v if their pressures are equal. For
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all Bystems at the same temperature, t is the same monotonously
increasing function of pressure alone.

Therefore, if the identification of r with temp)erature and ir with pres-

sure is undertaken for one system only, it can immediately be gener-

alised for all systems.

The simplest system for this purpose is the perfect gas, treated in

Chapter 5. We might therefore refer the reader at this stage to that

chapter and anticipate the results found there. This procedure would
be complete and logical. It seems somewhat unsatisfactory, however,

partly in view of the fact that the pressure is a purely mechanical quan-
tity which can be, and has been in section 3b, directly defined.

In the next section we will show that the definition (3. 7) of P is iden-

tical with the one of v made here, (12), and that r can be made to

coincide with the thermodynamic temperature by adjustment of the

scale factor h in S.

4d. Identification of Entropyi Temperature, and Pressure

The quantity S which is to be identified with the entropy is defined

as a function of the volume and the energy of the system. All other

outer variables on which the system, and therefore S, may depend will

at first be assumed to remain constant. The functional dependence of

S on y and E may be used to express the energy JE? as a function of V
and jS. The quantities r and v defined by 1/r = {dS/dE)y and
t/t = {dS/dV)E appear then as derivatives of the energy with respect

to S and V. Namely, if first V is kept constant, it follows that

If S is to remain constant the change of E with V must be such that

or

(4. 21)

(^\ 4. (?E\
\dv)s^\dE)v\dv)s^ *

Now the pressure P was defined in section 3b as a purely mechanical

quantity. It was shown there that P is the negative derivative of the

energy with respect to volume under certain conditions, namely, if the

energy changes with volume in such a way that the number of quantum
states of the system below the energy remains constant. We have

stated in section 4b, and will discuss at greater length in section 4f,
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that the Q determining S by the relation S ^ kin Q could be calculated

as just this quantity: the number of quantum states below the energy

of the system. It follows that P as defined in equation (3. 7) is the

negative derivative of energy with respect to volume at constant value

of /S, P = '-(dE/dV)s- Equation (21) therefore proves ir to be equal

to the pressure.

In general the thermodynamic state of the system, and therefore S,

may depend on several outer variables Xi - • • Xn (for instance, for a

crystal, on those determining the exact shape). Precisely the same

considerations may be applied to these as to F. If we define the quan-

tities Fx^ by

it follows that

(4. 23)

which is, according to the previous discussion, equivalent to the defini-

tion (3. 6) of the generalized force with w^hich the variable tends to

increase.

We may write then

(4. 24) dE = - if Fx^ dx, + r dS,

or. if the volume only is changed,

(4. 24') dE = -PdF + rdS.

The first n terms in (24) represent the work done by the outer forces,

or the negative of the work w done by the system. By definition, then,

the last term r dS is equal to the heat absorbed, q,

(4. 25) dE == —w + g = —w + r dS.

It is known in thermodynamics that the total amount of heat absorbed

by a system in a finite process is not a function of the initial and final

thermodynamic state alone but depends on the path between these

states. The mathematical expression of this fact is that the infini-

tesimal heat absorbed, q — dE + w, is not the complete differential of

any function of outer variables and energy. The definition of the

thermodynamic temperature, and simultaneously of the entropy, is that

the expression

(4. 26)
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is a complete differential, that is, that there exists a function S which
depends only on the state of the system, namely, the thermodynamic
entropy, for which dS = q/T. This is stated usudly in the short form
that l/T is the integrating factor of the heat.

The relation obtained above, q — t dS, shows that the quantity r has
just this property which is used to define T. Moreover, it can be
shown easily that, except for a multiplicative constant, 1/r is the only

integrating factor which has at the same time the property of being the

equilibriiim parameter for heat flow, that is, of being equal for two sys-

tems in thermal contact.

Any other function 0 satisfying the relation dip = q/f{xi, • •
• ,Xn,E) must

be a function of S alone, ^ 0(5),and therefore/(xi, • • • = T(d0/dS)"“^

If this latter quantity is to be the same for any two systems in thermal con-

tact, d(P/dS must be a constant, and <p proportional to S.

Now the definition of <S contains the factor k which has as yet not

been determined, r is proportional to and the heat g = rdS
independent of k. It is consequently possible to adjust the constant k

in such a way that the scale of r is identical with the scale of the thermo-

dynamic temperature T, T is defined with the help of the perfect gas,

and in the next chapter we shall show that r and T become identical if fc

is chosen as the Boltzmann constant.

We have proved, then, that r is equal to the thermodynamic temper-

ature and that S is equal to the thermodjmamic entropy.

We may now’ write the equations for the change of energy in the form

(4. 27) dE = -2: Fx dx, + r dS

= -w + TdS,

or, if the only outer variable of importance is the volume,

(4. 27') dE = -PdV + TdS,

The physical significance of equation (27) is the following. Any
infinitesimal change of energy has been split into two additive terms.

The first one arises from the action of outer forces, or changes of outer

variables. Owing to these changes the mechanical conditions of the

system are altered and therefore the energies of all quantum states are

changed. The total energy of the system varies in this process as the

average of the energies of all states available to it. This energy change

is equal to the work done on the system. During the change the number

D of quantum states available to the system, and therefore the entropy

jS « k In Q, remain constant.
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The second part of the change of energy takes place at constancy of

all outer variables. The mechanical description and the location of all

quantum states remain unaltered. The system merely absorbs or gives

up internal energy by going to a range of quantum states of higher or

lower energy. A measure of this is obtained tbrou^ the function S
which depends monotonously on E. This part of the energy change,

T dS, is called the heat absorbed by the system.

4e. The Liniits of Validity of the Second Law of Thermod]mamic8

“ What, never?” “ No, never!”
“ What, never?” “ Well, hardly ever!”

H. M. S. Pinafore.

The second law of thermodynamics can be stated in the form: the entropy

of an isolated s3rBtem never decreases. We have now claimed that this funda-

mental law is a consequence of the theorems of mechanics. It is appropriate

at this time to investigate the extent to which exceptions to this law might

conceivably be observed.

The entropy of a system has been Identified with the quantity S ^ k\nQ,
in which Q is the number of states available to the system. The statement that

S never decreases in an isolated system of constant energy was based on three

propositions: all processes carried out upon a system without changing its

energy or involving a change in some other system correspond to the lifting or

imposing of an inhibition; the lifting of an inhibition always increases the

available states; and the imposition of an inhibition decreases the value of S
by only a negligible amount.

The first of these statements is obvious enough if we consider that any system,

no matter how complicated, can be described by means of states in phase

space; and that all the processes obeying the criterion of not resulting from a

change in other systems merely allow changes in the distribution of the sys-

tem, or prevent such changes from occurring. The second assertion, that the

lifting of an inhibition can only increase S, is sufficiently evident.

We may now examine more closely the last statement, that imposing an

inhibition results in a negligible decrease in S, The application of an inhibi-

tion limits the system to some particular distribution D with respect to some

subdivision. The decrease in S caused by this process may be arbitrarily

divided into two parts. The first of these is that which accompanies the inhibi-

tion to the most probable distribution Dq, klnil — kla The second part

is the difference between the entropy of the most probable distribution and

that of the real distribution D into which the system happens to be frozen,

k In ^ In Sin*

The first of these decreases is of no physical significance and has nothing to

do with the actual validity of the second law, but concerns only the validity of

the method of calculating entropy. This is clearly seen if we consider the
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nature of the physical act to which the imposition of the inhibition is made to
correspond. Closing a stopcock between two flasks of gas in case they are in
equilibrium can cause no change in the system which could violate a law of
thermodynamics. Similarly, the prevention of a chemical reaction from
fluctuating away from equiUbrium by removing a catalyst, or the prevention
of variations in the temperature of two bodies by severing thermal contact,

cannot have results that are contradictory to the second law.

The numerical equivalence of A; In Ox>o &ud A; In 12 is due to the nature of the
acts which can be undertaken experimentally to limit a real system to one
distribution. Such operations always correspond to subdivisions of the sys-

tem which are so coarse that the logarithm of the number of distributions is

truly negligible compared to the logarithm of 12 (see equation 3).

This does not prevent an individual from making a stupid mistake of calcu-

lation by attempting to identify In 12x>q and In 12 for a distribution subdivision

so fine that the two quantities are not equivalent. Such an error has nothing

to do with the laws of thermodynamics, and indeed the values of In 12 are so

great in practice that such a blunder is rather difficult to make.

On the other hand, there exists a definite finite probability that a given

decrease in entropy may be observed by trapping a system in a condition of

non-equilibrium. This probability can be calculated.'*'

We wish to determine the chance that the distribution found, after imposing

an inhibition upon a system, will ha^e a lower entropy than that of the most

probable one by an amount —AS or greater. If we consider subdivisions of

the system into two parts only, the distributions can be numbered, arbitrarily,

from negative to positive values, in such a way that the most probable dis-

tribution has the number zero, Dq - 0. This was done, for instance, in the

example in section 3c. The quantity In 12o — In 12d is then developed as a

power series in D, The constant term in the series must be zero, and since by

definition D = 0 has the maximum value of In 12i>, also the linear term is absent.

The series begins with a quadratic term. Higher powers can certainly be

neglected for small values of D, and actually in large systems up to very large

values of the quadratic term, so that

(4. 28) In 12o - In 12n « aD\ 5o - = « * kal>\

The quantity a will depend on the type of system, its size, and the sort of sub-

division to which the distribution corresponds.

The ratio of the probability of the distribution D to the distribution 0 is

12d/12o * from (28). The probability of any distribution D
is then

PodD^Ce^^dD

and the undetermined constant C can be evaluated by integratingf this equa-

* The method followed is essentially that of Einstein, Ann. Physik, 83, 1276 (1910).

t P/) becomes negligibly small for large D, so that we can use the above approxi-

mation up to D 00 without appreciable error.
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tion from — oo to +co, obtaining C(ir/o)^^*, which must be unity, since the

sum of all probabilities is one. Then,

(4. 29) Pj> dD - dD.

Now from (28) the number of distributions dD in an interval ds of entropy

iadD ^ d8/2kaD, which, however, must be multiplied by 2, since both positive

and negative distributions contribute to the same range ds. The probability,

Pt, of a distribution with entropy less than that of the most probable one by

an amount s, per unit range ds, is

(4. 30) P,ds « (wksr^^^e-^'^^ds.

For moderately large values of AS/k, the integral of this function from AS
to infinity

(4. 31)

g-AS/fc

irAS/ky^^

is the probability that a decrease in entropy of AS or greater will be observed.

The result is simple and perfectly general. Independently of the size of the

system, of its nature, or the kind of distribution inhibited, the probability that

a distribution differing from that of equilibrium by an entropy difference of

AS or greater can be found is, neglecting the relatively unimportant denom-

inator, .

The order of magnitude of this figure can be appreciated only by ascertaining

the value of the entropy of some real Bystem. S/k for one mole of helium

at 273°K., 1 atm., is 4 X 10^. It is seen that the chance of observing an

entropy decrease in any system of one-millionth of this amount is about 10~^^'*,

a sufficiently small number.

The probability calculated above refers to a given absolute decrease in

entropy. An appreciable relaiive decrease AS/S may be observed in a suf-

ficiently small system. However, owing to the multiplicative law of inde-

pendent probabilities, it is clear that the same chance exists for observing a

given absolute entropy decrease by simultaneous independent application of

inhibitions to many small systems as to one experiment on a large one.

4f. The Relation between Entropy and the Uncertainty in the Energy

The entropy of any system was found to be S = fc In 0, where Q is

the total number of quantum states available to the system at a given

energy. The exact definition of D (section 2i) equates it to the number

of quantum states within a certain range of uncertainty dE, so that we

can write Q = Q(E) dE. If dE is large compared to two neighboring

energy levels, Q{E) is a smooth function of the energy which is unam-
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biguously defined and calculable. However, 0 is proportional to the

somewhat undetermined quantity bE,

Numerical calculations of S, on the other hand, are independent of

the size of bE over a wide range. Indeed, to within the limits of accu-

racy with which one determines S in practice, it makes no difference

whether it is equated to the logarithm of the number of states whose
energ>^ deviates from E by less than bE, or even to the logarithm of the

number of states whose energies lie below E, I il{E) dE. This can

be seen readily. Since dilJdE is always positive, Q(£) increases monot-

onously with E, and the two numbers in question differ at most by a

factor E/bE,

(4. 32) 111 f^Q{E) (IE - In 4, < In [«(£) < In f^Q(E) dE.
•/q bE Uq

Unless bE is chosen extremely small, In (E/bE) is completely negligible

compared to the tremendous numbers of states. For example, the

system consisting of one mole of helium at 273®K. and 1 atm. pressure

has In D = 4 X 10^®. An excellent experiment might determine the

energy to within one part in a million. This corresponds to a value of

In (E/bE) about equal to 14. Even if bE/E is chosen as small as

lQ-io» {E/bE) 10^®, the difference of the right- and left-hand

sides of the above inequality is only one part in 10®, and the definitions

of S as proportional to the logarithm of the number of states in the

region bE, or of the number of states below E, would differ only by 10”®

per cent. It is seen, therefore, that for macroscopic systems the uncer-

tainty in any ordinary experimental measurement of the energy is far

greater than any bE which would affect the numerical value of the

entropy.

However, from the purely theoretical point of view, one would feel

quite uncomfortable if there existed no natural limit to the smallness

of bE. If someone were to insist that in the example above bE/E =
lQ~io* chosen, the entropy of helium would be very appreciably

affected. Actually, such a natural lower bound to the value of bE does

exist as was discussed in section 2i.

It is obvious that, if a system a is in thermal contact with another

one b, so that a and b constantly influence each other and exchange

energy, it is nonsense to speak of the energy of a as exactly determined.

In fact, there exists a relationship (2. 35) between the utmost accuracy,

bE, with which the energy can conceivably be determined, and the time

At for which the system must remain undisturbed.

(4. 33) bE- At > h.
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This means that in order to determine the energy within an accuracy

6E the system must be kept so that no energy enters or leaves it for at

least a time interval M connected to bE by (33). The energy of a sys-

tem, then, has an infinitely sharp value onl}’' if the system is completely

•isolated for an infinite length of time.

To get an idea of the order of magnitude, one may calculate that, if

dkt is one second, bE > ft/1 = 6 X 10“"®^; and if At is a year or 3 X
seconds, bE >2 X 10“^^ erg. Now the energy of a mole of helium at

standard conditions is about 3 X 10^^ ergs, so that, using one year,

which would be a pretty long time to completely and successfully iso-

late a mole of helium, and certainly an impractically long time to leave

between observations, we find that bE/E > 10“^^. Since we have

seen that this quantity could be as small as 10“****, without disturbing

us much, we find that we are pretty safe.

The fact that bE decreases as the inverse time of isolation appears to lead

to the result that a really isolated system, isolated for infinite time, has zero

entropy. Indeed, the true stationary states of sharp energy

^

which on prin-

ciple could be calculated, but cannot in practice, owing to our limited capabil-

ities, have just the property that the astern i)ersists in them unless perturbed

by outer influences. The exact degeneracy of the corresponding levels will

presumably be small and independent of the size of the system. Classically,

these states correspond to closed orbits in phase space, but because of the

uncertainty principle of coordinate and momentum (2. 11) phase relations

cannot be determined. A completely isolated system is absolutely non-ergodic

with respect to these states.

An observation of any kind made upon the system immediately introduces

an uncertainty into its energy and causes unpredictable transitions to any one

of Q states of approximately the same energy. An exact determination of the

energy of a system precludes the knowledge of its entropy. This fact was

stated clearly from a classical basis by Gibbs.

The necessary uncertainty in the energy of a system upon which

observations are being made is sufficient to lead to an asymptotic value

of the entropy, practically independent of the conditions of observation,

provided that the system is of macroscopic size.

Since the entropy is linearly proportional to the size of the system,

it is small enough for systems of molecular size to be appreciably affected

by uncertainties in the energy, which are essentially independent of

size. In that case, only the method of Gibbs (Chapter 10) can be

applied. It consists in treating, not the one system, but instead a large

number, N, of identical systems in thermal contact. Energy NE, and

entropy NS as function of NE, for this combination system can be

calculated without trouble. The entropy S of the small system is

thereby found as a function of its average energy JE7.
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4g. The Third Law of Thermodynamics

The number In D for any system is naturally and completely deter-

mined and contains no additive integration constant. Moreover, it is

necessarily positive. The entropy S, of dimensions energy per degree,

has, therefore, a fixed positive numerical value dependent only on the

units of energy and temperature. This is, perhaps, the most general

statement of the third law of thermodynamics.

It is clear that although W, the phase volume measured in units of

h^, and D, the number of quantum states, are asymptotically equal for

many systems under certain conditions, nevertheless, the existence of

an absolute entropy is a consequence only of the laws of quantum

mechanics. For the definition of entropy and the derivation of the

second law, it is quite immaterial in what units the classical phase vol-

ume is measured; a change of units results only in the occurrence of an

additive constant in S. The use of TF as a dimensionless quantity,

phase volume divided by fixes this integration constant in such a

way that the classical expression for the entropy corresponds to the

quantum-mechanical one. However, h is essentially a quantum magni-

tude, and classical mechanics itself has no natural way of defining a

quantity of correct dimensions in whose units the phase volume could

be measured. Moreover, as the energy of the system is lowered, the

phase volume approaches zero, the classical entropy minus infinity.

Quantum mechanically the system can never exist in less than one state,

of phase volume so that S can at worst become zero. The third

law of thermodynamics is the quantum-mechanical law of thermody-

namics, although it was independently discovered.

The general statement of the third law given above has no great

value to the experimental thermodynamicist. It is scarcely consoling

to know that the integration constant present in the thermodynamic

definition of entropy is naturally defined, if no experimental method is

given for its determination.

Actually it appears to be impossible to give general directions for its

determination in purely experimental terms. It is probable that all

completely uninhibited real systems have one state of lowest energy, or

possibly a small number of states, independent of the size of the sys-

tem. S will then be zero, or practically so, at the lowest possible

energy of the system. However, this state may not be reached in

reasonable time by the system at low temperatures. All reaction rates

go down with temperature, so that real systems have an even greater

tendency to behave in a quasi non-ergodic manner at low temperatures

than at high ones. If brought into thermal contact with a heat reser-

voir at almost absolute zero for considerable periods of time, they may
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not even nearly reach this lowest state. In that case the entropy at

absolute zero may not reach zero but a residual value, the zero point

entropy, which, however, is never large.

Such systems may not differ in any single, simply detectable, experi-

mental way from others which have zero entropy at the absolute zero

of temperature. Carbon monoxide and hydrogen exhibit this behavior.

The zero point entropy of carbon monoxide is due to the fact that for

the relatively high temperature at which the crystal freezes the most
probable arrangement is one with (almost) random orientation of the

molecules with respect to the oxygen and carbon ends. At low temper-

atures, reorientation is extremely slow, although presumably one pre-

ferred orientation would be most stable. In hydrogen the zero point

entropy is connected with the slowness of transitions between even and

odd rotational states, which will be discussed later in greater detail.

In neither of these cases is the behavior surprising when once under-

stood. An idealized system with corresponding inhibitions can be

imagined, and the calculated entropies agree with measurements.

There is no reason to believe that the entropy of the real systems would

drop appreciably at lower temperatures than have been investigated.

Several objections may be raised to the common attempt to state the

third law of thermodynamics as: the entropies of perfect crystalline

substances at absolute zero are zero. The criterion of whether the

crystal is perfect or not is hard to apply except just by a determination

of its entropy. It also appears that certain non-crystalline substances

have zero entropy at 0°K. Theoretically this is predicted for the per-

fect gas and observed for the electron gas in metals, and it also appears

that the entropy of liquid helium approaches zero at absolute zero.

Nevertheless, whatever difficulties may be present in making an

exactly valid and also experimentally useful statement of the third law

of thermodynamics, the value of this law must not be underestimated.

Even were it not for the relatively recent calculations of entropies by

means of statistical mechanics, in which, of course, the absolute values

are determined, the fact that many systems have zero S at 0®K. has

been extremely useful to the experimental thermodynamicist and has

greatly aided in the calculation and tabulation of entropies and free

energies.

4h. The Conditions of Equilibrium and the Chemical Potential |l

After the identification of v, r, and S with pressure, temperature,

and entropy has been performed, thermod3mamics is shown to be a

consequence of statistics. For the definition and characteristics of

thermodynamic potentials we might simply refer to any textbook on
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thennodynamics. Howeveri partly on account of the confusion of

nomenclature, we prefer to give a short outline here. The discussion

of this section is purely thermodynamic.

The entropy S, which may be defined by equations analogous to

(11) and (12),

(4. 34)
Os

il

(4. 35)
/dS\ P
\dvjg “ r'

is stated by the second law to increase in all spontaneous changes taking

place at constant energy. The condition of equilibrium in an isolated

system of constant energy and volume is that S be a maximum. If

any variable x which defines a distribution of some sort in the system

is allowed to change, the change in S accompanying the variation 6x in

the variable x is diS = (^S/dx)y^s 5x, This change must be zero at

equilibrium; (dS/dx^y^g = 0 will determine the equilibrium value of x.

However, we seldom investigate experimentally the properties of

systems kept at constant volume and energy, but rather of systems at

constant volume and temperature, or even more frequently at constant

pressure and temperature. It will be found convenient to define new
extensive properties of the system, A(V,T), a natural function of vol-

ume and temperature, and F(P,T), a natural function of pressure and

temperature, as

(4. 36) A(V,T) ^E-TS,
(4. 37) F(P,r) = A + pv = p + P7 - rs.

A is called by various authors either the Helmholtz free energy, the

free energy at constant volume, or the work function by Lewis and

Randall. F is called the Gibbs free energ>^, the free energy at constant

pressure, the thermodynamic potential at constant pressure, or simply

free energy by Lewis and Randall. The equilibrium conditions at

constant temperature and volume are that A have its minimum value

or that (dA/dx^y^T = 0. For a system maintained at constant pres-

sure and temperature, equilibrium will be attained if {dF/dx)p^T * 0*

These conditions are easily proved. We regard the system a which

we wish to maintain at constant volume and temperature as a sub-

system in thermal contact with an infinite heat reservoir b, of the same

temperature, the whole comprising a combined system which is kept at

constant energy and volume. A change Bx in the distribution variable

X within the subsystem a will cause in a a change in entropy SSa »
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{dSa/Bx)v,T and also a change in energy, hEa * (dEa/dx)v,T

which will be accompanied by an equal decrease in the energy of b,

SEt » — SEa. This decrease caus^ a change (dSi,/dEb)y SE^ » SS^ in

the entropy of the reservoir 6. Since (dSb/dEb)r = 1/T, and SEb «=

— fij&oi this entropy change is (— l/T) 5Ea> The total variation

of entropy SS of the combined system is

from (36). SS must be positive for every spontaneous change, from

which it can be seen that the spontaneous reaction takes place in such

a direction that Aa decreases. Equilibrium will be attained when

{dS/dx)v,E — Oj or when (dAa/dx)y^T — 0-

The condition for equilibrium in subsystem a, kept at constant vol*

ume and temperature, is that the property A remains unchanged for an

infinitesimal variation in the variable x; the spontaneous process takes

place in such a direction as to decrease the value of A.

Similarly, if the part a is kept at constant temperature and pressure,

so that the infinite reservoir 5 is allowed, not only to lose energy to a,

but also to change in volume by an amount —6Fa for an increase

6Fa = {dVa/dx)p^T6x, brought about in a by a change in the variable

X, one obtains for a change 8x in x,

(4. 39) dS
/dS\

^
_/dSa

\dx )v,B \ dx 7 dx 7 Bx }

Equilibrium is established when {dFa/Bx)pj- is zero, and the spon-

taneous process goes in such a direction as to decrease F.

One of the most frequent problems of distribution to which the interest

of the chemist will be drawn is that of the number of molecules of a

certain kind between two parts a and b of a system. If Ni, the num-
ber of molecules of kind i in the whole system, kept at constant volume

and energy, is fixed, and Nai and Afw are the numbers in the two sub-

systems, respectively, N^i + Nn « Nt, we may ask for the condition

that will determine the equilibrium values of N^i and Nu- We shall

first consider that the interchange of energy and volume between a and
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b is inhibited, so that, during the transfer of BNad = molecules

from b to a, the energy and volume of a and b remain unaltered.* We
may write immediately

(4. 40)

The equilibrium condition is that of equal values of (dS/dNi)v,B the

two parts of the system.

If the chemical potential, m*, of molecules of type i, is defined as

14. 41)
Mt

then (40) leads to the result that, if the whole system is at one temper-

ature, molecules i will move spontaneously from that part of the system

in which their chemical potential is high, to that part in which it is low,

and equilibrium will be attained when their chemical potentials are the

same in both parts of the system.

If, in the original system, energy were not inhibited from Sowing

between parts a and 6, the equilibrium condition would be that Ta = Tj,,

and the total entropy of the system would be unchanged by an (infini-

tesimal) transferor energy from 6 to a. In consequence of this, even if

the transfer BNai of molecules from a to 6 were accompanied by an

energy transportation, equation (40) would still give the total entropy

change in the combined system, and the condition of equilibrium would

be, as before, that == It is obvious that the same consideration

holds if changes in the volumes Va and Vi, are uninhibited.

Using (36) for il(y,r), we see that any change (dA)r,r in A at con-

stant volume and temperature can be written as

(4. 42) (dA)y^T “ ~r(dS)v^7’ + {dE)v,T)

and the change (dS)v,T can be written as the sum of the changes (dS)v,E

at constant energy plus (dS/dE)v (d^.V.r = (V^) (dE)v,T> fitting

this in (42), the terms due to the change in energy cancel, and we

obtain

{dA)v,T = -T{dS)v^E,

or using (41)

(4. 43)
\axjr.r W.7fj.

• This process, obviously, does not correspond to any simple physical or chemical

experiment, but can be undertaken in thought.
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Similarly, for idF)p^T substitute

(4. 44) (dF)p,r - P(dV)p,T + idA)p,T

= P{dV)p.T + idA)y,T +

It is a well-known thermodynamic formula that {dA/dV)T = —P,
so that

{dF)pjr = {dA)v,T9

and we obtain from (43) that

Now if we inquire into the condition of equilibrium numbers N^i and

Nhi of molecules in two parts a and b of a combined system, kept at

constant volume and temperature, or constant pressure and temper-

ature, we must demand that ^1, or F, respectively, be unchanged by the

transfer hNai of molecules from h to a. From (43) and (44) we see that

in these cases as well as when the total system is kept at constant

energy and volume we arrive at the general relationship that at equi-

librium

(4. 46) fi^i
~ MK"

The chemical potential m is the partial molal free energy, F,-, of

Lewis and Randall, divided by Avogadro’s number. It might be called

the partial molecular free energy of the molecules of type i, and must

at equilibrium have the same value in all parts of the system. In a

system of one component, consisting of one kind of molecules only, the

derivative of the extensive quantity F with respect to the number of

molecules, {dF/dN)p^T, in which the intensive pressure and temper-

ature are held constant, is independent of the number of molecules, and

it follows that F is just the number of molecules, N, times n,

(4. 47) F — Nn (one-component system).

If one deals in thermodynamics with different parts of a system, one

usually refers to parts which are not only experimentally distinguish-

able, but even obviously distinguished, such as different phases, liquid

and gas, solid and liquid, etc. There is, however, no logical limitation

to the application of the laws derived above to finer subdiviraons of the

system. In statistical mechanics it will be found extremely useful to

do this.



CHAPTER 5

THE PERFECT MONATOMIC GAS

(a) The Mathematical Representation of the System, (b) The Distribu-

tion of Energy among the Atoms, (c) The Most Probable Distribution.

(d) Boltzmann Statistics, (e) The Equation of State, (f) Maxwell-

Boltzmann Distribution, (g) Evaluation of e" and Limit of Applicability

of Boltzmann Statistics.

6a. The Mathematical Representation of the System

In this chapter we wish to calculate the properties of the simplest

thermodynamic system, namely, the perfect, monatomic gas. These

calculations are used not only as an example; they belong in the scope

of the general discussions, in so far as the results obtained here will

enable us to identify the quantity t, defined in equation (4. 11) and

shown to be proportional to the temperature in section 4d, with the

temperature itself, provided that the proportionality factor k is chosen

as the Boltzmann constant.

We mil represent the perfect nmwtomic gas by an idealized ergodic sys-

tem of independent mass points.

The treatment of the atoms as independent is certainly justified at

sufficient dilution. Since the forces between the atoms are of short

range, an atom will, most of the time, travel in field-free space, and will

but seldom be within the range of the forces of other atoms. The inter-

action, therefore, takes the form of collisions, that is, spontaneous

transitions to other quantum state; which make the system ergodic

(compare section 3f). Since all gases become perfect at low enough

densities, independence of the atoms must be the criterion of a perfect

gas.

The states of electronic excitation of the atoms are neglected com-

pletely. This is justified for normal temperature ranges if, and only if,

the energy of these excited levels is very high. A proof of this state-

ment, and a detailed discussion of the cases of deviation from this

assumption, are presented in section fie. In one way, however, we wish

to take the internal degrees of freedom of the atoms into account: the

ground level of the atom may be fli-fold degenerate. (Compare section

2h, example 3.) Actually, in stable atoms this happens only on account

of the possible orientations of the nuclear spin, s«, so that g + 1.

109
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The mechanical behavior of the atom is then the same as that of a mass
point, except that every state of the point corresponds to g states of

the atom.

The quantum states, or cells, of one point of mass m in a volume V
have been calculated in section 2g, example 1. To distinguish it from
the energy E of the total system, the energy of the individual molecules

will from now on always be designated by c. The energy of an atom
in any of the cells described by the three integral quantum numbers,

ky, k„ is given by

The asymptotic number of states of one mass point, whose energies lie

between c and c + Ac, was calculated in equation (2. 34) and has to

be multiplied by g to give the corresponding number of states of the

atom,

mV
(5. 2) C(6) A£ * Atq (2W€)1/2 A€.

The energy, E, of the total system is the sum of the energies, (1), of

the individual constituents. The possible states of the total system,

and therefore the number Q{E) of states consistent with £, and the quan-

tity S{E) of Chapter 4, depend on the kind of system the individual

particles form: Einstein-Bose or Fermi-Dirac (compare section 2k).

The calculations will be made for both cases, and for the third, classical

one, which treats the atoms as distinguishable in principle and leads to

Boltzmann statistics.

5b. The Distribution of Energy among the Atoms
First, the most probable distribution of atoms over the ranges of

energy will be determined. Assume the scale of energy, c, of the single

particles to be divided into regions, the jth one extending from to

€j. The tj values may be chosen equidistant or otherwise, but the dif-

ference between consecutive energy values, A,c = cy — ey«i, must be

large compared to two neighboring levels of an atom; it will later be

demanded that Aye also be small enough to allow summations over the

different regions to be replaced by integration over €. The surfaces of

constant energy ey divide the six-dimensional phase space (m space) of

the individual mass points into ranges, each of which contains very

many cells, or quantum states of the particles. The phase volume of

the jth region, that is, the number of quantum states whose energies lie
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between and will be designated by C>, and is equal to the quantity

C(cj) Aj€ of equation (2).

A distribution D of the atoms over these energy regions is defined

by giving the numbers Nj of molecules whose energies lie in the jth

region. It is now our task to calculate the number of states, Qd, which

are consistent with one distribution. The result is different for the dif-

ferent kinds of systems.

1.

EinsteirirBose systems. If a state of the total system is determined

by the number of atoms in each cell it is necessary to calculate the num-
ber of ways in which Nj identical (unnumbered) balls can be distributed

among Cj boxes. This is the same as the number of ways in which Nj
can be expressed by a sum of Cj integers, some of which may be zero,

different order of the summands being counted as different. In Appen-

dix AVII. 10 this number is calculated to be

(Cj + Nj- 1 )!

(C, - l)!A, !

‘

The total number of states is the product of this expression for all ranges.

(5. 3) Go ~ n
/

2.

Fermi-^Dirac systems. If there may never be more than one atom
in a cell, Nj must be equal to or less than Cj. The number of ways in

which Nj indistinguishable balls can be distributed into Cj boxes, no

more than one to a box, must be calculated. This amounts to a calcu-

lation of the number of ways in which the Cj boxes can be divided into

two groups, of N

j

full ones and (Cj — N j) empty ones. This number
is given (see Appendix A VII. 9) by

Nj\{Cj^Nj)\'

The total number of states is the product of this expression over all

regions.

(5. 4)
Cjl

Nj ! (Cj - N,) !

3.

Boltzmann systems. If the particles were actually different and
distinguishable, a different state is obtained dependent on which of the

total N particles belong to each region. We have, therefore, first of all
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to calculate the number of ways in which N particles can be divided

into groups of Nj each, such that - N. This number is

N\ Nl
IlNjl
j

Since the particles are completely independent, the number of ways in

which N

j

particles can be put into Cy cells is simply and the

number of states consistent with the distribution is

C
(5. 5) =

For corrected Boltzmann counting (5) has to be divided by N !, the

factorial of the number of identical particles (see section 2k).

In all three cases the numbers N j have to obey two additional condi-

tions, namely, that the total number of particles and the total energy

are fixed:

(5. 6) iV = EiVy,

(5. 7)
3

Formula (7) is an approximately correct expression for the energy only

if the width Aj-e of the regions is small compared to the average energy

of one atom.

6c. The Most Probable Distribution

First of all, it is desirable to transform these expressions for into

continuous functions of the variables JVy. If all iV/s and C/s are large,

this can be done by using the Stirling approximation for the factorial.

Now it is obviously impossible that the Nj^s of every region are large,

since we have chosen an infinite number of energy ranges. On the

other hand, ranges with a small number, iVy, of atoms, contribute little

to the value of In so that the ensuing error is negligible.

The results for the different cases are:

1. Einstein-Bose systems, if we also neglect unity compared to Cy,

(5. 8) In 12^ = LKCy + Nj) In (Cy + iVy) - Nj In Nj - Cy In Cy]
3
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2. Fenni-Dirac systems

(5. 9) In 12/) nCi In Cj - Nj In JVy - (C,- - Nj) In (Cy - Nj)]

3. Boltzmann systems

(5. 10) In = In iVI + r Wj In C,- - Nj In Nj + N,l
i

It is easily seen that, if Nj Cy, the numerical values of (8) and (9)

approach each other, that is, they differ only in terms of the order of

NyCj. Their common value is (10), if the term In N ! is omitted.

This had already been stated in general in section 2k. Since the factor

N ! is the same for all distributions, it does not affect tlieir relative prob-

abilities. We shall, therefore, omit the term In N ! from now on, and

use what we called in section 2k corrected ” Boltzmann counting for

Boltzmann systems. That this division of Qjr, hy N \ for Boltzmann

systems is actually necessary also in pure classical calculations, if one

wishes to identify k In 0/)^^ with the entropy will be discussed in detail

at the end of section 5d. We find, then, that the number of states

belonging to a distribution in a corrected Boltzmann system (which is

not realized in nature) is the limiting value of the statistical weights of

the same distribution for an Einstein and a Fermi system in case of

great dilution of the gas in the n space, that is, if N j C. Cy.

The next step is the calculation of those values of N j for which

is a maximum, subject to the conditions (6) and (7) that the total

number of particles and total energy remain constant. The method is

the usual one for finding the maximum of a function of several variables

which are subject to restrictions (see Appendix AVI). The restricting

equations (6) and (7) are multiplied by constants a and j3 and sub-

tracted from In Qp, the function w’hose maximum is to be found. The

values of the variables Nj at the maximum must fulfill the conditions

(5. 11
) ^ [In fix, - « r Ni - /S L eyiV,] = 0.

aJS y y y

The undetermined multipliers a and $ have then to be determined by

putting the values of Nj obtained into the equations (G) and (7).

One finds for the different cases:

1. Einstein-Bose, In (Cy + Nj) — InNj — a — fitj = 0;

(6 . 12)

Nj^ .1

Cy - 1
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2. Fenni-Dirac, In (Cy — AT,) — InATy — o — fiej = 0;

(5. 13)
Nj 1

Cj + 1

3. Boltzmann, In Cj — In JVy — a — fitj =» 0;

(5. 14) ^
6d. Boltzmann Statistics

The elimination of a and 0 through (6) and (7), calculation of the

entropy, and identification of 0 with l/kT, are mathematically easy

only for case 3, Boltzmann statistics. It is seen that both (12) and

(13) become identical with (14) if is much greater than unity, when\

the 1 in the denominator can be safely left out. This is, of course, \

precisely the condition that N j Cj. We shall, therefore, limit our-

selves from now on explicitly to those ranges of values of E and N for

which I

.

In the last section of this chapter we shall calculate

e" and see what the restriction actually amounts to. It will turn out

that for all gases composed of atoms and molecules (but not for light

quanta and electrons) deviations from Boltzmann statistics occur only

at very low temperatures and high concentrations, that is, under con-

ditions where the real system is not even gaseous.

To calculate a and 0 in terms ofN and E the numbers Nj of the most

probable distribution, (14), must be inserted into (6) and (7). The
summation over the energy ranges can be replaced by an integration,

the number of states in an infinitesimal re^on being ^ven by (2). The
numerical values of two definite integrals occurring in the calculation

are

VO VO

The results are then

JV = L JV; = Z Cc{€)e^* dc
3 3 •'0
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(6.16) jr

.

E - = Z C,^se~^'i = C-« r C(e)6C-'»‘ de
i i «^o

Division of (16) by (15) eliminates a and leads to

(6. 17)
2 ' 2£

and from (15) with (17) one obtains

(5. 18) e“ = ff

>/3AV AT"^ \ 3 h^N/ N

The logarithm of the number of quantum states in the most probable

distribution, Dq, or the quantity S = fc In of Chapter 4, as a func-

tion of energy and volume of the system can now be obtained by insert-

ing the values of Nj, (1.4), into (10) and asing (17) and (18) to eliminate

a and p. This leads to

S = * In Oo. = A: L (in^ + l)

= Z Njia + pti + 1) = kpE + fc(a + l)Af

(5.19) s.|tAr + Wh[,(^’'‘I].

In Chapter 4 it was proved in general that the quantity S = A; In

is the entropy for every system, provided that k is chosen correctly.

Equation (19) shows that S for the perfect gas is an extensive prop-

erty. It is proportional to the number of particles and depends other-

wise only on the density, N/V^ the energy per particle, E/N, the mass

m, and finally on the small number g, the statistical weight of the
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ground level of the atom. Equation (19) is known as the Sackur-

Tetrode equation for the entropy of a monatomic gas.

It was stated in Cliapter 4 that the same numerical value for S is obtained

whether it is defined as the logarithm of the number of states of the most prob-

able distribution, of the number of all states consistent with the energy, or

even of all states whose energy lies below the given total energy E. Let us

assume the ground level of the atom to be non-degenerate, that is, ^ = 1. The

number of states with energy below E is, then, for the corrected Boltzmann

system, proportional to the volume of all points in the 6A^-dimensional phase

space (7-space) whose energies lie below E. Since the energy is independent

of the 3N positional coordinates, x, this phase volume is obtained by integra-

tion over all values of the x% leading to a factor and by integration over

all 3N momenta, p, subject to the condition that (p? + • • • 4- pIn) ^ 2mE.

This latter integral is the volume of a sphere of radius (2mEy^^ in 3N dimen-

sions, its asymptotic value for large N is given by {4TemE/3Ny^‘^ (see Appen-

dix A V).

This phase volume has still to be divided by to make it a dimensionless

quantity, and by iV ! — The result

is in complete agreement with (19).

12(E) itseK differs from f S2(E) dE only by a factor 3N/'2E; therefore, S
Jo

defined as k In 52 (E) differs from the value obtained above only by the additive

terms k In (3N/2) — fc In E, which are absolutely negligible compared to kN In N
and kN In E.

The division of the phase volume by N ! was introduced because all

real systems are of the Einstein-Bose or Femii-Dirac type, and only the
“ corrected Boltzmann counting is the limiting case for both types.

It is, however, easy to show that, even from purely classical consider-

ations, apart from any knowledge of quantum phenomena, this division

of the phase volume by N ! is necessary if we desire to identify S with

the entropy. If it had not been done, S w'ould contain the additive

term kN In N — kN. Since this term is constant for a fixed number
of particles, it would not influence the identification of temperature

and pressure, undertaken later, or the relations between these quan-
tities. But S itself would no longer be proportional to the size of the
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system. If we have two identical, but separated, S3^stelns, that is,

systems of the same density, N/V, same P or E/N, and size, N, the 5
of the combined system is simply twice the value of S of each part.

But, if we remove a wall between the two gases, so that w^e obtain one

system, of the same density and P as before, but of 2N particles, the

S value w’ould not be the sum of the S values of both parts but would
be larger, on account of the term kN In N, by the amount 2kN In 2,

which is by no means negligible. On the other hand, the removal or

insertion of a wall between two parts of the system is a process which

leaves the thermodynamic entropy unchanged. For this reason the

division of the phase volume by N ! was introduced somewhat arbi-

trarily into classical statistics long before quantum mechanics gave

the true explanation for it.

It is seen, then, that purely classical considerations lead to the same
value for S, (19), that we obtained from quantum-mechanical argu-

ments, except, of course, for the term ZN In A, which, however, only

fixes the additive constant in the entropy in agreement with the third

law.

fie. The Equation of State

The temperature T was defined in equation (4. 11) as the inverse of

the derivative of entropy wnth respect to energy. Using (19) one

obtains

T \dEJr 2 E

SO that

(5. 20) £? = I kNT.

Comparison with (17) shows that

(5. 21) f -

That P must be a function of the temperature alone could have been

shown directly, without resorting to calculation of the entropy. If

we have, namely, two completely independent gases of, respectively,

and molecules each, with energies and E^^\ and if we

divide the m space into energy regions and calculate the equilibrium

distribution for both systems simultaneously, we find that

In = In + In
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The maximum of this quantity must be determined subject to the four

conditions

(5. 22)

3 3

This means that the four quantiti^ have to be multiplied by the unde-

termined constants and subtracted from In before

differentiation with respect to the iVy’s. As is to be expected, the most

probable distribution of each system is in no way affected by the exist-

ence of the other one. For each system, the ratio Nj/Cj will be given

by one of the equations (12), (13), or (14), depending on the nature of

that system.

If, now, energy is allowed to flow between the two systems, so that

only the total energy E — + E^^^ is fixed, we have only three condi-

tions instead of the four of (22), and have, therefore, to multiply E^^^

and E^^^ by the same constant /3 before subtracting from In 12^. The
most probable distribution will have the same form as before, except

that the relation must hold that

(5. 23) ^ p

This means that two gases in energy contact, which are therefore at

the same temperature, have the same value of In other words, P is

a function of temperature only.

This fact was derived quite independently of the nature of the gases;

it is valid for Fermi and for Einstein gases as well as for Boltzmann

systems, and even for a combination of two gases of different nature.

Since w^e have identified l/kp with the temperature for the Boltzmann

gas, the relation jS = l/fcT holds also for the Einstein and Fermi gases.

The relation (20) expresses the fact that the energy at fixed temper-

ature is independent of the volume; experimentally this means that

the Joule-Thomson coefficient for a perfect gas is zero.

The pressure of any system, according to equation (4. 12), is defined

by the relation

or, from (19),

(5. 24) PV = kNT.

This is the well-known equation of state for a perfect gas.

We had shown in general only that T was a linear function of the



Eq.5.26] MAXWELL-BOLTZMANN DISTRIBUTION 119

temperature. Now we find that if the proportionality factor k is chosen

as the Boltzmann constant k = 1.3804 X 10^^® erg per degree, so that

k multiplied by Avogadro’s number, No, is 12, the gas constant per mole,

the statistical and perfect gas temperatures are identical.

The pressure of the perfect gas can, of course, also be calculated

directly, without resorting to the general considerations of Chapter 4

and the identification of S with entropy. According to (1) the energy

of every state of a single particle depends on the volume in the same

way, namely, it is proportional to Since the energy of any state

n of the total system is the sum of the energies of the independent

particles, it follows that

dV 3

The pressure is defined as the force per area resisting a change in

volume, averaged over all quantum states available to the system; we

find the relation

(5. 25) P =
dV 3y '

which, in combination with (20), also leads to the equation of state (24).

It is seen that the considerations of this chapter could have been

carried out quite independently of the general discussions of Chapter 4.

Indeed, had we not already identified the quantities v with pressure and

T with temperature in section 4d, we could have done so with the help

of this example: the identity of equation (25) with (24) after insertion

of (20) proves the pressure to be r(dS/dV)g, and relation (24) then

shows r = l/{dS/dE)v to be the perfect gas temperature. Since

(dS/dE)v had been demonstrated in section 4c to be the same monot-

onous function of T, and T(dS/dV)E at constant T the same function

of pre^ssure for all systems, the identification would have been complete

and *S proved to be the entropy for all systems.

It was essential to the discussions in Chapter 4 that the constant k

in the definition of entropy as S = fc In 0 be the same for all systems.

The choice of A; as the gas constant i2 divided by Avogadro's number

assures us that, for all systems, equations (4, 10) and (4. 11) define

entropy and temperature in agreement with the conventional scale.

5f. Maxwell-Boltzmann Distribution

Going back to the formula for the most probable distribution, (14),

and using relation (21) between /8 and temperature, we find

(5.26)
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This implies that the ratio of the number of atoms in a quantum state

k with energy to those in a state k' of energy is

(5. 27)
Â'k'

As previously, (he number of molecules whose energy lies in the

region between € and e + Ae will be written N(€) Ae, the number of

single particle cells in that region as C(c) Ae, given in (2). The most

probable number of molecules in the region Ae is then

ifiV
N(€) A€ = Ae.

Klimination of c “ with relation (18), using jS = \/kT = 3N/2E, gives

(5. 28) N(t) ^ JV A*.

This formula can be transformed further by noting that the energy c

of a single particle is related to the magnitude of the velocity, v, by the

equation \mv^ = €. A range Ac of energy corresponds to the range

mv * Av of magnitude of velocity. If we designate by A^{v) Av

(= N^e) • mv • Av) the number of particles with velocities between v

and V + Ac, we find

(r,.2<.) ArWA„.(?)‘'V(^

This is the familiar Maxw^ll-Boltzmann law of distribution of velocities.

This equation was derived in Chapter 1 (equation 1. 29) in a less strict

manner, and some of its applications and consequences were discussed

there. In ( -hapter G it will be showm that this law also holds for gases

with internal degrees of freedom,

6g. Evaluation of e" and Limit of Applicability of Boltzmann Statistics

At the beginning of section 5d it w^as mentioned that, although all

true gases are either Einstein-Bose or Fermi-Dirac systems, the results

of sections 5d and 5e, wiiich are derived for Boltzmann systems, hold

as long as the quantity c® in (14) is very large compared to unity. We
now wish to investigate in which way this condition limits the applica-

bility of the formulas of the last three sections, c® was calculated

in (18). Substitution of l/kT for jS brings this into the form

3/2

I

j,2^-mvV2kT

(5. 30)
„ /2irmkTyf^ V /47rniE\3/2 y
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or, introducing the pressure instead of the density,

^ /2irmfc7’\»/2 kT

The quantity a has a direct phj^sical significance. It was shown in

equation (4. 41) that (,dS/dN)v^T = in which m is the chem-
ical potential or, for a one-component system, such as the one we are

treating here, the free energy per molecule. Differentiation of (19)

mth respect to N at constant volume and energy gives

Comparison of (30) and (31) shows that

(5. 32) a =
fcr’

The condition c“ 1 demands a certain dilution of the molecules

in g space: the greater the volume per molecule and the energy per

molecule the less often it will occur that tw’o or more particles occupy

the same cell.

increases with decreasing P, and rapidly with increasing T. Of

the individual characteristics of the molecule only the mass and the g

factor enter into the equation for e®. From (30) and (30') one sees

that at given density and temperature, or at given pressure and temper-

ature, a substance with small m will have low e“ and show deviations

from Boltzmann statistics most easily. Helium, therefore, which

remains perfect to very low temperature.s, should be the most favorable

gas for the demonstration of this effect. Numerical evaluation shows

that

(5. 33) a® = 0 .026sf

J^fZI2rpbi2

P«tlQ.

where M is to be given in atomic-weight units, P in atmospheres, T in

degrees absolute. Helium, M = 4, has no nuclear spin and a non-de-

generate lowest electronic level
;
therefore, ^ = 1 . Since it is made up

out of an even number of elementary particles (two protons, two neu-

trons, and two orbital electron.s) it obeys Bose statistics. For the

boiling point of helium, T = 4.2”K., and P = 1 atm., we find e® = 7.5.

It is therefore not inconceivable that deviations from Boltzmann sta-

tistics for helium could be found experimentally. However, at these

high densities, the attractions between the atoms mask the statistical



122 THE PEEFECT MONATOMIC GAS [Sec. 6g

effect sufficiently so that this has not been demonstrated clearly so far.*

All other material gases have much higher boiling points, therefore

show imperfections at much higher temperatures, so that the condition

1 is amply fulfilled. The values of c“ at the respective boiling

points for the following substances are:

Ha, T = 20.3‘’K., e“ = 1.4 X 10®,

Ne, T = 27.2“K., = 9.3 X 10®,

A, T = 87.4“K., = 4.7 X 10®.

Matters become very different if we consider an electron gas at high

density, such as we find inside of metals. In that case Boltzmann

statistics would become applicable only at temperatures far above the

melting point of the metals, and the formulas derived in sections 5d, 5e,

and 5f cannot even be used as approjdmations, but Fermi statistics (13)

has to be employed throughout (Chapter 16). For photons, which

obey Einstein-Bose statistics, (12) must be used (Chapter 16).

* See, for instance, Erich Beth and George E. Uhlenbeck, Physica, IV, pp. 915-

924 (1937).



CHAPTER 6

THE PERFECT GAS WITH INTERNAL DEGREES OF FREEDOM

(a) Introduction, (b) The Partition Function, (c) The Separation of

the Partition Function as a Product, (d) The General Equations, (e) The

Distribution of Molecules among Internal States, (f) Hie Influence of

the Zero of Energy, (g) The Influence of Nuclear Spin, (h) The Elntropy

of Isotope Mixing, (i) The Internal Partition Function of a Monatomic

Gas. (j) The Classical Internal Partition Function of Molecules.

6a. Introduction

In Chapter 5 the ratio Ny/Cy of the number of molecules, Nj, to the

number of cells, Cj, in an ideal monatomic gas was calculated. The

region j was defined in such a way that Nj consisted of all the molecules,

and Cj of all the cells, the energy of which lay between tj and cy + Aye.

The calculation was made for the two different kinds of quantum-

mechanical sj^stems: one, the eigenfunctions of which were all sym-

metric (Einstein-Bosc); and the other, the eigenfunctions of which

were all antisymmetric (Fermi-Dirac). For this one-component sys-

tem the chemical potential p is the free energy per molecule. In terms

of p and (j, the expression was found to be

(6. 1 )

the negative sign referring to the Einstein-Bose, and the positive sign

to the Fermi-Dirac, systems.

It can be seen that, although the equation was derived for a perfect

monatomic gas, the method used would be just as applicable to a sys-

tem composed of any N mechanically independent identical molecules

with Cj any number of arbitrarily chosen cells, the enei^v of none of

which was lower than «y, or higher than ey + Ay«. We shall repeat the

argument in an independent and somewhat briefer form in order to

demonstrate this.

6b. The Partition Function

A system composed of N identical independent particles in a volume

F will be considered. The number of degrees of freedom, /, per particle,

the number of coordinates necessary to specify completely the position

of the particle will not be limited to three. In general, then, not only

123
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the three Cartesian coordinates X, Y, Z, of the center of mass, but in

addition / — 3 other coordinates will be needed to describe the position

of one molecule completely. If the particles are idealizations of diatomic

molecules / will be six, and tho three internal coordinates chosen would

be Of 4>f and r or f, as stated in Chapter 2. Corresponding to the /
coordinates there will be / (juantum numbers, and the quantum-

mechanical specification of the state of a single molecule w\\\ be made
complete by giving the values of these/ quantum numbers which specify

a single cell of volume in the /x space. The energy of the particle

will be the sum of two terms, one depending on the translational quan-

tum numbers alone, k*, k^, and k„ and the other, the internal energy,

depending on the / — 3 internal quantum numbers. Since the different

quantum states of translational energy, at least, lie very close together

in the energy scale, there will be a great number of cells in any small

energy range.

The eigenfunctions of the system may be either all symmetric

(Ein.stein-Bo.se), or all antisymmetric (Fermi-Dirac). We shall

assume, as alwa3"s, that N is a very large number. Of all the possible

quantum states of the individual molecules one group is singled out,

consisting of Cj arbitrarily, but definitely, chosen states, the energies

of all of which lie between ey and cy + Aye. We shall investigate the

distribution of molecules between these and the remaining quantum

states. The Nj molecules occupying any of the chosen Cj states will

be said to form the part j of the .system. This part j occupies the whole

volume of the system. The other part consists of the remainder,

coexistent in the same volume. Both Nj and Cj will be assumed to be

large.

The value of 5y, the entropy of the part j, is k In fiy, and will depend

only on the number of cells Cy and on the number of particles Nj in the

part j of the whole system. Sj has been found by equations (5. 8)

and (5. 9) to be

(6, 2) Sj = k In == A- C’, In ± + Nj In ± 1

in which the upper signs refer to the Einstein-Bose, and the lower sigiLS

to the Fenni-Dirac, systems. The total derivative of Sj with respect

to Nj is

If the total system is to be in equilibrium with respect to the transfer

of particles between these two parts of the system at constant total
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energy, the entropy must have a maximum value with respect to such
a process. This requires that the increase in entropy of the remainder
of the system upon adding to it a particle from the part j must equal
the expression of equation (3). This transfer of a particle from the
region j to the remainder of the system involves not only the addition

^of a particle to the remainder of the system but also the addition of an
amount of energy dEj/dN j, so that the change, -dSr/dNjy in the

entropy of the remainder of the system upon the addition io it of a par-

ticle from the region j may he written

For these partial derivatives of the entropy the thermodynamic
expressions be used: {dS/dN)E^v is the negative of the thermo-

dynamic potential n divided by the temperature, equation (4. 41), and

(dS/dE)jf^v is the reciprocal of the temperature, (4. 34). The quan-

tity dEj/dN j, the energy n^moved from the region j to the remainder

of the system with one particle, is just €y, the energy of one particle in

the Region j. One obtains

dSr —M "f* €

Equating the two relations (3) and (5) leads to equation (1).

I'or all real gases at moderate temperatures, —n/kT, which is always

positive, lias a large value compared to 1, and unity can be neglected

compared to the very large exponential, so that the approximate form

(0 . 6
) ^

which is fhe classical equation, is obtained. We shall assume the

validity of tliis equation (6), whicli is equivalent to assuming that

Nj/Cj 1, in the remainder of this, and in the next several chapters.

p]quation (f5) holds for any arbitrarily chosen region j of energy ey.

The sum of Nj over all possible regions, covering exactly all the cells,

must be N, the total number of particles of the system. We may write

(6. 7) N = ZA'i = .

y y

The sum is the sum over ail quantum states of one mole-

cule of the expression This sum will be called the total partition

function of the molecules, and will be designated by the letter Q. It is

also variously knowm as the sum of states, or in German as the
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“ Zustandsumme/' although these terms are more frequently reserved

for the analogous siun over the internal quantum states of the mole-

cules, which we shall introduce later and designate by Q|. The sum
can be written omitting the Cj if it is understood that the summation
is to go over all the cells, or quantum states of the molecules, for which

we shall use the summation index n.

Defining Q as

(6. 8) Q =
n

and solving equation (7) for the chemical potential, m, we obtain a very

useful equation for this important thermodynamic property of the

system,

(6. 9) n^kT[lRN -]nQ].

The partition function Q is the sum over all quantum states or cells

of the molecules of the exponential of minus the energy over fcT. The
energy, in classical mechanics, expressed as a function of the coordinates

and the momenta is the Hamilton function, The number of

quantum states in a region of phase space between qi and gj + Agi,

Pi and Pi + Api, q2 and q2 + Ag2 ,

* •

’iPf and p/ + Ap/, will be, if all

the products Ag»* Ap< are large compared to fe, just the volume of this

region of the phase space in units of

(6. 10) C = hr^ Agi Api Ag2 • • * Ag/ Ap/.

The product, number of quantum states times the exponential, is then

(6 . 11 ) = irfe7fiip^9)lkT

and the sum can be approximated by an integral*

(6. 12) Q - JJ - J dg, . .
. dpj.

This expression will be valid as an accurate approximation for the

partition function if the expression H{p,q)/kT does not change appre-

ciably, compared to unity, if for any coordinate both g, and p** are

changed by an amount Ag,- and Ap,- such that Ag* Ap* = h. This condi-

tion means that all the quantum states are separated from their neigh-

bors by an energy interval which is small compared to kT,

* The effect of the symmetry of the equilibrium configuration of the molecule

which necessitates multiplication of this integral by the reciprocal of the symmetiy

number is discussed in sections 7f and fie.
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6c. The Separation of the Partition Function as a Product
For all molecules^ within the approximation that the mass is inde-

pendent of the internal energy, the Hamiltonian or energy function,

is separable into (at least) two additive parts, the one depend-
ing only on the coordinates and momenta of the center of mass, and
the other only on the internal coordinates and momenta, 7,*, p,-. To a
somewhat less accurate approximation the internal part may itself

usually be separated into a sum of terms, each depending on one only,

or a few only, of the various 2(/ — 3) internal coordinates and momenta.
In these cases, as discussed in section 2h, the quantum mechanically

allowed energies can be expressed as a sum of terms, each a function of

one, or a few only, of the total / quantum numbers. If k is used for the

set kf, and k^, the quantum numbers of translation of the center of

mass, and i is used for a set of / — 3 internal quantum numbers, the

total energy of the molecule, a function of k and i, can be written as

(6 . 13) €(k,i) = e(k) + €(i).

The energy of translation €(k) is itself a sum of three terms, each depend-

ing on one only of the three quantum numbers, k^, kj,, or k^. If m is

the total mass of the molecule, and the quantization is assumed for

convenience to be made in a cubic box of side 7^^® along each of the

three principal axes of space, then equation (2. 17) gives the energy of

translational motion as

(6. 14) *(k) = + K +

The sum Q of equation (8) is to be taken over all quantum numbers,

all values of k and of i. The values which k can take are independent of

those of i, so that the summation may be represented as an independent

summation over k and over i. Using (10) for the energy, and remem-

bering that c*“*^ = c® • c*', we obtain

(6. 16) Q =

= = Ok • Qi‘
k i

If now equation (14) is used for €(k), it is seen that is itself a product

of three independent and identical sums, and we may write

(6. 16) Qu “ [i:

For ordinary values of V and T, and masses corresponding to that of

the hydrogen atom or greater, the argument of the sum changes very
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slowly with k. Writing [/i/2F^^®(2m7cr)^^^]k = z, and replacing the

summation by an integration, one obtains

since
/

== \/7r/2,

•'o

We may now use (17) with (15) in (9) to obtain the equation for the

free energy of one mole of the gas, F =•* iVoM* with A’, the number of

particles, replaced by Avogadro's number A^o> and V, the \'()lunie per

mole,

(6. 18) F = ftrrin
(5-^r^y

^V ~ ^-1
L \2irmkT} V 'J

(6. 19) Qi =
I

ali internal quaiiiuni stateH, i

/^wATy'2

V
'

The sum Qi is the sum of for all the internal quantum stat(»s of

the molecules. This is the internal partition function of the molecules.

It is often referred to as the sum of states, or, in (.Terman, as the
** Zustandsumme,'' and is sometimes designated in the literature as Q.

Equation (16) is perfectly general and applies to a perfect gas consist-

ing of molecules of any degree of complexity whatsoever. The only

assumptions used in its derivation are that the molecules are mechan-

ically independent of each other, and that 'B/RT has a moderately large

negative value so that (6) is justified.

The condition that the Hamiltonian can be written as a sum of terms,

each depending on one pair only (or a few pairs only), of the coordinates

and their conjugate momenta, is the same as the condition that the

quantum-mechanical expression for the energy of the molecule can be

separated into a sum of terms depending each on only one (or on a few

only) of the / quantum numbers. Under these conditions the classical

expression for Q, just as the quantum-mechanical, can be s(*parated

into a product of terms. In the classical expression each of these

terms is an integral, corresponding to the sum of the quantum-
mechanical expression.

It frequently happens that the Hamiltonian can be expressed as a

sum of terms, each depending on only one or a few pairs of the coor-

dinates and conjugate momenta, and that for several of these terms, at

a given temperature, the condition that the energy difference between

adjacent quantum states be small compared to kT is amply fulfilled,
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whereas for others the condition is definitely not obeyed. The classical

integral can then be substituted for the quantum-mcchanical sum in

the factor of Q containing those degrees of freedom for which the quan-
tum energy differences are small, and the sum expression may be used

for the degrees of freedom for which this is not true.

Essentially this simplification has just been used in calculating Q^.

The additive part of the Hamiltonian due to the motion of the center

of mass of the molecule is (l/2m)(p* + pj + pi), and does not con-

tain the coordinates. Substituted in (12), the integration over the

coordinates can be performed at sight, giving, by definition, just the

volume V of the system. The integration over the momenta remains

to be performed in order to calculate the classical ex[)rcssion for

The expression is, then,

+ 00

(6. 20) Qk = Vh-^ JJJe-<-pl-^v\+v\)r2mkTdp^di)ydp,.

-00

Separation of this into a product of three identical integrals^ and the

introduction of the integration variable z = p/(2mfcT)^^^, give us

The expression of (21) is identical with that of (17).

6d. The General Equations

We shall now proceed to derive the equations for the other thermo-

dynamic functions. To do this we calculate the entropy, as a sum
of the valucis of the entropy, Sy, for the various regions j, using the

equilibrium values of Nj/Cj in equation (2). With equations (3) and

(5) it is found that

t'
'

This is the second term of Sj in (2). If summed over all j values, since

j
= N and = E, one obtains {E — f)/r, remembering that

N^ is the free energj' F. Using this, and the thermodynamic equation

o
PV + E -F

T

for the entropy, one finds

(<i. 22) S = ZSi = dr ZkCi In dr
E-F
T
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From thiS| the perfectly general equation

is obtained independently of any special assumption that Nj/Cj is

small. Equation (23) is valid for Einstein-Bose systems (with the

positive sign) and for Fermi-Dirac s3rstems (with the negative sign).

When iVy/Cy is small one can develop

so that the sum in (23) is » N, and

PV
(6. 24) = N, PV = RT (for one mole)

is obtained for Boltzmann systems.

Substitution of Nq/V = P/kT in equation (18) gives the free energy,

F, of the system in terms of its natural variables, P and P, per mole

of material, as

(*“> (5;;^)'"

The work function A differs from F by PV = RT (which is the same as

for a monatomic gas with a non-degenerate ground energy level), so

that the contributions of the internal degrees of freedom to these two

properties of the system are the same,

(6. 25') F, - A, - - BT In Q, = - RT In Ec-"’/**’.
i

The derivative of F with respect to T at constant pressure is the

negative of the entropy,

(6. 26)

Qi (per mole).

where the negative sign has been eliminated by inverting the fraction

under the logarithm, and the 5P/2 obtained in the differentiation has

been added by multiplying the expression under the logarithm by
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The contribution of the internal degrees of freedom to the entropy is

(6. 26') Si = B^ r In ft = [in (?, + ^Z

.

For the heat content, H, we may use the thermodynamic equation

(6.27) H-F + rs.F-r(|)^.-7'»(^)^(E),

obtaining

(6. 28) ® ° ^^ *** ^‘1

The energy per mole, E, differs from the heat content by PV = RT,

so that the contributions of the internal degrees of freedom to these

two properties are the same:

(6. 28') Hi = Ei = RT^^ ^
We shall presently derive equation (32), that the total number, Ni>,

of molecules with the internal quantum number i', and therefore with

the internal energy «(i'), is {No/Qi')e~‘^'^"‘
^ per mole of gas. Equation

(28') for the internal energy, then, has the very simple interpretation

that it is the sum over all internal quantum states i of the product of

the internal energy per molecule, *(i), by the number of molecules, N„

having this energy.

The expression for the heat capacity per mole at constant pressure,

Cp, is

(6.29) C.-Q^-«[5 + ^(F‘ilna)] (Permol.).

The contributions of the internal degrees of freedom to both Cp and

to Cv are the same:

(6. 29') C„ * Cri = = ^0 Jf;
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which may be brought into the form of a double sum:

(6.29'") c« = ck,
2 Oi i>j i>o\kT kTj

All the extensive thermodynamic properties, F, A, S, H, E, Cf, and

Cv. of a perfect gas with internal degrees of freedom can be arbitrarily

divided into two additive parts, one of which is due to the translational

motion of the center of mass of the molecules and is the same as for a

perfect ideal monatomic gas with a non-degenerate ground level. The
other part, the contribution of the internal degrees of freedom, is a

simple function of the logarithm of the internal partition function of the

molecules.

6e. The Distribution of Molecules among Internal States

Equation (6) may be used to calculate the average number N^> of

molecules in one particular quanturh state, the quantum numbers of

which are k' and i'. If one uses equation (13), that the energy, c(k',i'),

of the molecules in this quantum state can be expre.ssed as a sum,

«(k',i') = €(k') + *(i'), one obtains

(6. 30) JVkr =

If now the number of molecules, Ny, in the one single internal quantum

state i'l but having any quantum state, k', of translation, is obtained by

summing (30) over all values of k', one finds

(6. 31) Ni- =

=

In this expression (7) or (9) may be used, = N/Q “ N/Q^Qi,

so that

(6. 32) Nf =
V̂i

The internal Hamiltonian, H(p,-,9i). may often be separable into two

additive parts, so that the energy <(i) can be expressed as the sum of

two terms, c(m) + c(n), in which m and n represent two independent

sets of internal quantum numbers (see section 2h, example 2). If this

is so we may write

(6. 33) Q, = Q„(3. if «(i) = «(m) -|- t(n),
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It is clear that the same argument used to derive equation (32) may
be employed to arrive at the expresrion

(6. 34) N^. -^ e-*(«')/*r

Wm

for the number of molecules in the quantum state of value m\ inde-

pendent of the value of the quantum numbers of the set n.

To the range Aqi Api • • •Aqi Api • • • Aq^ Apm of the m coordinates

and momenta contributing an independent additive term, Hm(p,q)t to

the Hamiltonian of the system, there correspond Api • • • Aq^ Apm/h^
quantum states, provided that the range is so chosen that all the m
products Aqi Api are large compared to h. If the temperature is such

that Hfn(v»9) changes negligibly compared to kT over the whole range,

the exponential is essentially constant over the whole

range, and the number, N^ip^q) Aqi Api • - • Aqn Apmt of molecules in

the portion of the n space corresponding to this range of the m coor-

dinates and m momenta will be given by

(6. 35) Nmip^q) Aqi Api • • • Apm

Aqi Api • • • Aq„ Ap„.

If this condition of negligible change in Hm{p,9) compared to kT for

every range Aqi Api ^ A is satisfied, the factor Qm of the partition func-

tion due to these m degrees of freedom may be calculated by means of

the classical integral as has just been discussed.

Equation (35) is the complete classical Maxwell-Boltzmann dis-

tribution law for a system of independent particles, the Hamiltonian of

which includes a potential energy. The m degrees of freedom considered

in (30) may be all the degrees of freedom of the molecules, including the

translational, or a small fraction of them, provided that these m degrees

of freedom are separable from the others of the system, that is, pro-

vided that the Hamiltonian is composed of two additive parts, one

containing only the coordinates and momenta of the m degrees of fr^
dom considered, and the other containing only the remaining degrees

of freedom.

From equation (31) it is seen that the ratio, Ni/Nit, of the numbers,

ATj, and Nit^ of molecules in the two internal quantum states i and i^,

respectively, is given by

(6. 36)
N,
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It is to be noted that in equations (31) and (36) as well as elsewhere

the symbols i and are used to designate single (non-degenerate) states

of the molecules, and not energy levels, which might be degenerate

and consist of several states. If the ratio, Ni/Ni», of the numbers of

molecules in two levels, { and l\ respectively, is sought, the expression

on the right of (36) must be multiplied by the ratio of the degeneracies

of the levels, that is, by the ratio of gt, the number of states in the level

I, to gi», the number of states in the level The expression then

becomes

(6. 36')
gv

The expressions (36) and (36') may be thought of as the simplest cases of

the general thermod3aiamic relationship, AF® = RT In /C, in which AF° is th^

free energy difference, at standard pressure, of one mole of products and one

mole of reactants in a chemical reaction for which the mass action constant is

K, The reaction Ai' Ai is a simple reaction of one reactant to give one

product for which K, the ratio of the partial pressures, is just Ni/Ni'^ if the

materials are perfect gases. Since both reactants and products are, by defini-

tion, inhibited to single internal quantum states, they satisfy the definition of

having no internal degrees of freedom, and behave therefore like monatomic

gases. Since the product and reactant have the same molecular weights,

their entropy difference is zero. One mole of reactants gives one mole of

products, so the change of PV in the reaction is also zero. It follows that

AF® = AE * NoUii) — €(iOl per mole. The use of this expression for AF®,

and the substitution of NyNi* for K in the thermodynamic equation, lead to

(36).

If the reaction Av Ai is considered, the change in PV is still zero, but the

change in entropy is not. Reactant and product have entropies R In gr and

R In gi respectively greater, per mole, than the ideal monatomic gas, due to the

gr and gi internal quantum states of the same energy which they may occupy.

Using AS * fi In (gi/gr) and AF® = AE + APV - T AS leads to (36' )

.

Of. The Influence of the Zero of Energy

The internal partition function Qi is defined as the sum, over all

internal quantum states of the molecules, of e to the power minus the

energy over kT,

Since the energy of the lowest quantum level of the molecules or

atoms may be arbitrarily assigned any value, such as zero, or cq, it is

interesting to investigate the influence of this choice on the thermo-
dynamic functions. The entropy, which is determined by the number
of quantum states available to the system, would, at any given temper-

ature, be expected to be independent of an arbitrary translation of the

energy scale. The energy, heat content, and free energy should be
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raised in value by an amount Nq^q per mole, if eo instead of zero is

chosen for the energy of the lowest level of the molecules. The specific

heats should be unaffected by the choice. This is actually so.

The value of Qi calculated under the convention that the lowest

energy is zero will be designated by the S5rmbol Qjo, and that calculated

with the lowest energy assigned the value 6o will be designated by Qi*.

Every term in Qi* will differ from the corresponding term in by hav-

ing an additive •-eo/kT in the exponent, the terms in Qj, will each be

smaller than the corresponding ones in Qjo by a multiplicative factor

The complete sum must then be smaller than Qio by this

factor, and the logarithm of the sum less by the additive term —-eo/ftr,

(6.37) InQu = InQio-^,

(6.38) r(A)i„e.-r(i)i„e„ + (^),

(6.39) J;(ringu) =;|;(7’lnO,o).

Comparison of these equations with equations (25') to (29') shows that,

whereas S and C are independent of the assignment of the energy of

the lowest level, F, H, and E are raised by eoR/k = A^oco if this value

is chosen as co instead of zero.

In general, unless the contrary is specifically stated, the convention

will be adopted that the energy scale will be measured from the lowest

level of the atoms or molecules, so that this energy will be assigned the

value zero. In this case the energy, heat content, and also, with cer-

tain exceptions which will be discussed later, the free energy and

entropy, will be zero at the absolute zero of temperature, 0°K.

6g. The Influence of Nuclear Spin

In calculating the value of Qi for an atom it is customary to sum over

the different electronic quantum states of the atoms only. For a dia-

tomic molecular gas, or a polyatomic one, the summation is made over

lotational and vibrational states, as well as over the electronic, but for

most gases, atomic or molecular, the different nuclear spin states are

neglected.

The nucleus of an atom may, and often does, have a nuclear spin

magnitude of Sn other than zero (measured in units of A/2t). This

nuclear spin magnitude is fixed, and cannot change (ivithout great change

in energy), for a given isotope of a given element. The nuclear spin of

magnitude Sn can take 2sn 1 different orientations along any unique
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axis in space. These different orientations are distinguished from each

other in that the projection of the spin along the chosen axis may take

any of the 2sn + 1 values which differ by integers from —Sn to +Sn
inclusive. (Sn is always an integer or a half odd integer; it is int^al
if the atomic weight of the isotope is even, and a half odd integer if the

atomic weight is odd.)

The magnitude of the magnetic moment associated with the nuclear

spin is so small that there is no appreciable energy difference between

the states of differing, nuclear spin orientation, even if the atom or

molecule has itself an appreciable magnetic moment due to other

causes. (The very slight energy difference is responsible for the hyper-

fine structure observed in the atomic spectra with very good in-

struments.)

From a statistical standpoint, then, the effect of the nuclear spin is*

only to increase the number of quantum states in every energy level of

the molecule by a factor 2sn + 1 for every atom present in the molecule.

This means that every term of Qi is greater by a factor equal to the

product of all the (2Sn + l)*s for all the atoms in the molecule. The
result is an additive tenn in the logarithm of Qj, the sum of the log-

arithms of the (2Sn + l)'s. This term is, of course, temperature inde-

pendent, and will not enter into any of the temperature derivatives

except {d/dT)T]nQij to which it will also add the sum of the log-

arithms of the (2sn + l)'s. The result for the thermodynamic prop-

erties is that the nuclear spin contributes nothing to the energy, heat

content, or specific heat, but adds R In (2Sn + 1 ) and —RT In (2Sn + 1

)

to the entropy and free energy, respectively, for every gram atom of the

element (or isotope) of nuclear spin Sn- Since the number of atoms

remains constant in every chemical or physical change, except those

of transmutation, this term cancels in every entropy or free energy

difference, and in no way influences the thermodynamic behavior of the

system.

This, however, is not the whole story. In symmetrical diatomic or poly-

atomic molecules, that is, in molecules which contain several identical atoms,

only those states are realized in nature for which the eigenfunctions are sym-

metric, or antisymmetric, respectively, depending on whether the mass num-

ber of the atoms is even or odd. For given mutual orientation of the spins not

all rotation-vibration states are possible. It can be shown that for any given

spin orientation only a fraction I/7 of adjacent rotational levels have the cor-

rect symmetry. The number y is called the symmetry number. It is the

number of ways in which a molecule may be rotated into positions which would

be different from the original one if the identical atoms were numbered and

distinguishable, but which look identical to the original orientation in view of

the identity of the atoms of the same element. For diatomic elements 7 » 2.
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In a comparatively large range of rotational levels there will be only 1/yth

as many states existing in a symmetric as in a non-symmetric molecule, inde-

pendent of the nuclear spin. As long as the energy difference between adjacent

rotation levels is small compared to kT the result is only to add the term ~ln 7
to the internal partition function, Qi. The fact remains, however, that there

are precisely (2s„ + 1 )" times as many states in a symmetrical molecule of m
identical atoms of nuclear spin Sn, as there would be if the spins were zero.

As long as the energy difference between adjacent rotational quantum levels

is small compared to the temperature so that the \^lue of the exponential

ig same for adjacent levels the effect of the nuclear spin will always

be to add ln(2Sn + 1) to InQi, for every atom of the isotope of spin Sn present,

for B}rmmetrical as well as for non>symmetrical molecules.

If, however, the energy difference between adj.acent rotational levels is large

compared to the temperature so that the value of the exponential is appre-

ciably different for two neighboring j values, then the value of In Qi will depend

on whether the odd or the even values of j are available to the molecules. This

in turn will depend on the electronic and vibrational quantum numbers, and

on whether the atoms require symmetric or antisymmetric eigenfunctions, and

also, if there is a nuclear spin other than zero, on the mutual orientation of the

nuclear spin vectors in the two atoms.

This will be discussed in detail in sections 7f and 8d.

In symmetrical diatomic or polyatomic molecules containing iden-

tical atoms, although the effect of the nuclear spin is always only to

increase the number of quantum .states in any range of energy which

includes man}'^ rotational levels of the molecule, by a factor equal to

the product of the (2s ,1 + l)\s for all tlie atoms of the molecule, the

actual rotational states which are available to the molecule are different

for different mutual orientations of 1 he nuclear spins. If the energy dif-

ference between adjacent rotational levels is large compared to kT this

results in a complicated effect on In Qi. At high temperatures, however,

the effect is always to add In (2s» + 1 ) to In Qj per atom in the molecule.

It is really only in molecular hydrogen and a few hydrogen derivatives,

for which the moment of inertia of the molecule is small and, conse-

quently (see equation 2. 25), the spacing between the rotational

levels large, that the more complicated effect of the nuclear spin is

obser\^able at a temperature sufficiently high for the material to exist

in the gaseous state.

The addition of R In (2Sn + 1 ) per gram atom of isotope to the

entropy, and consequently —RT\n (2s„ + 1 ) to the free energy, is an

effect that alters none of the properties of the system, and none of the

equilibria in which the number of atoms of the various isotopes is

unchanged. Therefore, except in respect to hydrogen, just mentioned,

and then only at low temperatures, the fact that nuclear spins exist
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can be entirely forgotten in attempting to predict the behavior of

matter in bulk. This is rather fortunate, since with a few exceptions

the magnitude of the nuclear spin is only imperfectly known. It is

customary to omit nuclear spin entropy in calculating or tabulating

entropy and free energy values. Uriless the contrary is specifically stated

nuclear spin entropies will always he omitted,

6h. The Entropy of Isotope Mixing

One other complication present in a real system, which is usually

neglected and negligible in effect, is the fact of the existence of dif-

ferent isotopes of the same element. Different isotopes of the same

element are different atoms of the same atomic number (nuclear charge),

but of differing integral atomic weights. For most substances, although

not, of course, for hydrogen, the weights of the different isotopes are suf-

ficiently close, percentually, to the average atomic weight so that the

use of this for the mass of any of the isotopes introduces a negligible

error in any of the equations. The internal quantum states of the dif-

ferent isotopes have also almost the same energies. Substances in which

the masses cannot be regarded as identical, and in which the internal

(luantum states of the molecules have appreciably different energies if

they contain different is()to[)cs, will not be considered here. The
isotopes of these substances can be separated chemically. We wish to

discuss at present only the effect of the fundamental non-identity of

the different isotopes on the value of the thermodynamic i)roperlies of

the system.

We see that here we must expect no effect on the* observabki prop-

erties of the system, since, although wo are assuming that the isotopes

are really distinguishable in some way in principle, wo intend from the

start to neglect all physical differences. This will actually be the

result of our considerations, but only if the temperature is moderately

high, that is, where the effect of the nuclear spin can be neglocU^d.

The calculations of this chapter have been made under the specific

assumption that all the N particles were absolutely identical. Sup-

pose that the system which we treat consists of N\ molecules of one

kind and N2 of another kind, wdth Ni + N2 = N, Since the molecules

of kind 1 and those of kind 2 are entirely independent, they may be

treated as composing two different systems, coexistent in the volume
V, and in equilibrium with respect to exchanges of energy. This equi-

librium assures their having the same temperature.

The molecules of the two different types, although in some way
physically distinguishable, are so similar in all properties that the

quantum states of the molecules have the same energies for a given set
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of the / quantum numbers. The Q’s and Qis of the two kinds of mole-

cules are then numerically identical.

The mole fraction of the molecules of kind 1 is ni =* Ni/N, and that

of the second kind is n2 = ^2/Ar, so that + 112 = 1 . The free energy,

per mole of material, and hence per tii moles of the molecules of type 1 ,

will be, for the first kind of molecules, just rii times the expression of

equation (18 ), with, however, Ni replacing Nq under the logarithm.

Since Ni = uiNq, this can be written as ni times the expression of

equation (18 ) plus a* term ttiRT Inni. The free energy of the whole

system, the sum of the free energies of both kinds of molecules, will be,

since ni + ^2 == 1
,
less than the free energy of a system composed of

only one kind of particle by just the additive (negative) term

RT{ni In + n2 In 712). In taking the derivative with respect to T,

equation (26 ), to obtain S, an additive Inni + 712 In 712) will

be introduced into this property. E and H will be unaffected.

In section 2k it was pointed out that if one attempted to describe a quantum

state of a system composed of N identical particles by describing the cell of

each (numbered) particle, out of the N ! states which differed only in pennuta-

tions of the particles in the cells, there co\ild be formed only one eigenfunction

which was completely symmetric in the j)ermutation of the particles, or only

one which was completely antisymmetric. The equations of this chapter were

derived by using this method of counting, tliat Ls, by counting only the number

of particles in each cell instead of the cell of each numbered particle. If, how-

ever, the eigenfunctions were only to Ije symmetric (or antisymmetric) in

permutations of the Ari particles of the first kind with themselves, and in i)ermu-

tations of the A'2 particles of the second kind with themselves, but did not need

to have any particular symmetry character with respect to piermutations of

one kind of particle with one of tlie other kind, then every state of the old sys-

tem with all particles identical would correspond to N \/Ni I A^2 ! states of the

system with the two kinds of particles.

The value of Q for the system of two kinds of partiiies will then be greater

than that of one kind of particle b3’^ the factor AT !/A^ ! A'2 ! . The logarithm

of this factor, multiplied by A;, wrhich gives the difference in entropy, is

k{N \nN -Ni In Ni - In N2) or -R{ni In w-i + ?i2 In W2) per mole.

In a gas composed of molecules which contain one atom each of an

element having the mole fraction nj of isotope of type j present, the

entropy of mixing due to the isotopes is *— -B lii ^31 which is of

course a positive quantity, since the mole fractions nj must be smaller

than unity.

In a later chapter we shall show that at moderate temperatures, and

indeed under the same conditions that the nuclear spin entropy is given

by R In (2Sn + 1 ) per gram atom, even if molecules are present con-
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taining several atoms of the element having the different isotopes^ the

entropy of mixing due to the presence of the isotopes is the same per

gram atom of the element. This means that the entropy and free

energy differences between systems for which the number of atoms of

the different elements is the same are unaffected by the existence of

the isotopes. As with nuclear spin entropy, unless otherwise stated, the

entropy of isotope mixing will be omitted from the calculations and tabula-

tions of entropy and free energy,

6i. The Internal Partition Ftmetion of a Monatomic Gas

The various internal quantum levels of an atom, which are due to

different electronic configurations, are usually separated from each

other by an energy difference of the order of magnitude of an electron

volt, or some tens of kilocalories per mole. The value of kT at 1000°K.

is 0.08616 in electron volts, or 1.9864 k cal./mole. The exponential
g-e/fcr

^ energy 1 e.v. = 23.055 k cal., mole is then ®

or about 10““® at 1000°K. For a gas composed of atoms, Qi consists

of a sum of terms only a very few of which differ appreciably from zero

at all ordinary temperatures.

Since we have agreed to designate the energj" of the lowest level as

zero, the exponential for a state of the lowest energy level is e® or unity.

The contribution to Qi of the states of zero energy will then always be

an integer, the number of states in the lowest level.

The spectroscopic notation which is in common use for most atoms* is tf)

designate a level of the at<to, or si)ectroscopic term, by a capital letter carrying

a left-hand superscript and a right-hand subscript. This is knowm as the

Russell-Saunders notation, which is applicable to atoms having Russell-Saunders

coupling. The superscript gives the “ system ” to which the term belongs,

which may be singlet, doublet, triplet, etc., designated by 1, 2, 3, etc.

This superscript, the system number, is 2s + 1 ,
in which s is the value of

the resultant electron spin of all the electrons measured in units of h/2T, (The

square of the vector sum of all the electron spins is s(s -|- 1) (A/27r)®.) s may
take integral or half integer values, and is integral if the atom or ion contains

an even number of electrons, otherwise being a half odd integer. The vector

of magnitude s can take different orientations with respect to another vector

of magnitude L

The vector of magnitude I is the vector sum of the orbital angular momenta

of the electrons, and I is always an integer. The value of / for the term is indi-

cated by the capital letters 8, P, D, F corresponding to Z = 0, 1, 2, 3, respectively.

The magnitude of the vector sum of the spin, and the orbital angular

momentum, X both vectors, is called j, and is the total angular momentum.

* See, for instance, L. Pauling and S. Goudsmit, The Structure of Line Spectra,

McGraw-Hill, New York, 1930.
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j may take values differinf; by integers between the two values
|
s — / 1

and

s + inclusive. The number of different values which j may take for a given

8 and given I is the smaller of the two numl)ers, 2s + 1 or 2/ + 1. The value

of j is written as a right-hand subscript in the term symbol.

The term is then to be read as: singlet system (superscript 1), the value

of the resultant electron spin s is therefore zero, the resultant orbital angular

momentum I is zero (given by S), and the total angular momentum j is zero

(given by the subscript 0).

The term *5i/2 is doublet system, s — 1/2, / = 0, j = 1/2.

In these two examples, as in all terms belonging to the singlet system for

which s SB 0, and also for all S terms for which f 0, the value of j is uniquely

determined by the values of s and L However, the term *Pi/2 ,
doublet sys-

tem, 8 = 1/2, Z = 1, with j
= 1/2, has a companion term ®Pa/2 in which the

only difference is that j is 3/2. These two terms have energies lying moder-

ately close to each other, which is the origin of the designation that these terms

belong to the doublet system. However, since for any P term Z * 1 and

2Z + 1 = 3, there can never be more than three terms even if the system is

quadruplet or quintuplet, just as there never can be more than a single 5 term

even in a doublet or triplet system (except at entirely different energies for

which an independent S term may exist).

It is, then, to be expected that if the lowest term of an atom is an S term, or

any term belonging to a singlet system, there will probably not be another

term of the atom which is very close to the first in the energy scale, although

this may happen accidentally. If, however, the lowest term of an atom is not

an S term, and does not belong to the singlet system, it follows that there must

be one ormore companion terms not differing very greatly in energy from the first.

Just to make it harder for the reader, and perhaps easier for the typesetter,

one finda in some books and journals that instead of half odd integer values of

j, the next larger integer is given. Since s is a half integer for doublet, quad-

ruplet, and sextet systems, j is always a half odd integer in these cases and

never for singlet, triplet, and quintuplet systems. The nomenclature is there-

fore unique. One must then take care to notice that for systems of even multi-

plicities, if the right-hand subscript of the term is written as an integer, the

real value of j is that of the subscript minus one-half.

The right-hand subscript j in the spectroscopic notation of the term

level is the total angular momentum due to the electrons of the atom,

measured in the quantum units of h/2ir. This angular momentum may

be regarded as a vector of magnitude j which can take 2] + 1 different

orientations in space, with the component of the vector along any

arbitrarily chosen axis taking values differing by integers from -j to

-f i, inclusive. These 2j + 1 different orientations of the angular

momentum correspond to different states of the atom, each with the

same energy (in the absence of a magnetic field). They therefore

belong to the same level or term.
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The number of states belonging to the lowest level, the degeneracy

of the term, is then 2j + 1 . If the lowest term is an S term, or if it

belongs to the singlet system, it usually happens that there eTdsts no
other level than the lowest with energies less than several electron

volts. In these cases up to several thousand degrees, and always in

the neighborhood of 0°K., one can write Qj = 2j + 1
,
where j is the

subscript in the spectroscopic notation of the lowest term. The deriv-

ative of In Qi with respect to temperature is then zero. In such cases,

one sees from equations (25') to (29') that the contribution of the

internal quantum states to the entropy is In (2j + 1) per mole, to F
it is —Sr In (2i + 1 ) per mole, and the contribution to E, H, and C
is zero.

The lowest spectroscopic term of all the noble gases is a term.

The level consists of a single quantum state. The next level has an

energy* of 159,843 cm.”"^ = 19.72 e.v. or 454.6 k cal./mole in helium,

and less in the other gases until it is 8.273 e.v. for xenon. Even at

5000®K. this level contributes only 10”"® to the sum Qi in xenon, and

less in the other noble gases. We see that we may well write Qi ~ 1

,

In Qi = 0
,
for the noble gases up to considerable temperatures, and

these gases are ideal monatomic gases in the scnise used in the pre-

ceding chapter of having only one effective internal quantum state,

that is, = 1 .

For the alkali metals the lowest term is so that j
= 1/2, and

the degeneracy is 2 . At 0®K. In Qi = In 2
,
and the entropy per mole

would be greater than that of an ideal monatomic gas by R In 2 per

mole. The second term, a ^Ri/2 ,
with a companion ^^

3/2 of only

slightly higher energy, has the energy 14,903.8 cm.”"^ in lithium and

11,178.3 cm.““^ in cesium. For the other alkali metals the value of

the term lies between these two limits. The 11,178.3 cm.“^ term of

cesium has an exponential of 1.1 X 10"“^ at 1000®K. and

3.35 X 10~^ at 2000®K.

One particular example which occurs in calculating the thermody-

namic properties of some monatomic gases is instructive and extremely

easy to handle. In the halogen atoms the lowest term is a ^P8/2 ,
which

is accompanied by a ^Pi/2 term of slightly higher energy, and then

comes a rather large energy gap before the next excited level. The
^Pi/2 term has an energy of 407.0 cm.~^ in fluorine, €/k = 682.7®; and
3685 cm,“S c/fc * 5275®, in bromine. The next term has an energy of

* Energy differences in atoms and molecules are observed by spectral lines the
wave numbers, 1/X, of which are directly measured. The wave numbers are con-

nected with the energy differences by the relation Ac * Ap * Ac/X, and in this sense

may be used as an energy unit; see conversion table A XIV.
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102,412 in fluorine and 63,429 in bromine. Even at

10,000®K. this latter term contributes less than 10"“^ to Qi in bromine,

whereas the ^Pi/2 term has an exponential of 0.512 at this

temperature. These atoms may be treated as if only two terms existed,

and all the higher terms may be neglected. In this particular example
the degeneracy, or number of quantum states, in the lowest term,

qq, is 2(3/2) + 1 =4; the degeneracy of the second term is 2.

We shall consider a particle which has go quantum states of zero

energy, and gi states of energy €, and no other states whatsoever. Qi is

then go + and In Qi may be written as

(6. 40) InQi = ln(go + f/ie"“*'*^).

Differentiating,

(6. 41) ^

/cT (go?^^^ + go

(6. 42)

(6. 43)

— (rinQ.) = —
kT + gi)

+ In ({To + gte-‘'^^),

gi gpe'

Using the symbol u for e/kT, and inserting the above equations in

(25^) to (29^), one obtains for the contribution of the internal quantum
states to the thermodynamic properties, per mole,

(6. 44) Fj = -RT]n {go + gie “),

(6. 45) H, = E, = RTu - - .

goe“ + gi

(6. 46) Si = ftTw +ln(go+&i« )lf
L goe“ + gi J

(6. 47)
r\ .->2 glgO®

(w* + ».)“

At high temperatures for which u approaches zero, — F/fiT and S/li

approach the same asymptotic value of In (^o + 'B^/RT and C/R
approach zero at high temperatures. With w = 0 the fraction of the

molecules in the upper level approaches gi/{go + gi) and the internal

energy per mole becomes Nq^ times this value, w'hich can be seen to be

the asymptotic value of (45) as T - » ,
w - 0.

The functions Bi/RT, -Fi/RT, Si/R, and Ci/R are plotted against
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a logarithmic scale of \Ju ~ A;T/e, in Fig. 6. 1, with &nd Qi both taken

equal to unity. The specific-heat curve is seen to have a sharp maximum

kT/e-^

Fiu. 6. 1. The contribution to the thermodynamic properties of a mole of gas due to

the internal quantum states of the molecules, if there are only two non-degenerate

states with an energy difference c, plotted against kT/t on a logarithmic scale.

at a temperature of about 0.4€/fc. The maximum of Ei/RT ia at about

twice this temperature. S|/i? rises rather rapidly to its high temper-

ature value of In 2, being within 10 per cent of this value below 1/u = 2.

6j. The Classical Intemal Partition Function of Molecules

The classical expression for the intemal partition function, Qi, may
be written as

(6. 48) • • • dpf, dgi • • • dqf^,

in which/,- is the number of intemal degrees of freedom, and Hi^p^q) is

the Hamiltonian for the intemal degrees of freedom, the total Ham-
iltonian for the molecule minus the kinetic energy due to the translation

of the center of mass.

In general, the classical expression will never be valid, at reasonable

temperatures, for the electronic degrees of freedom. If the contribution

of the electronic degrees of freedom to the partition function cannot be

expressed as a simple temperature-independent integral factor (see

section 6i), then it will be impossible to use the simple purely classical

form of (48) for Qi. We shall consequently assume that, at the tem-

perature in which we are interested, no electronic levels are excited.

The number of degrees of freedom of the molecule is not influenced
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by the presence or absence of forces, and since three coordinates are

necessary to specify the position of an atom in space, the total number
of degrees of freedom of n atoms will be 3n, whether they are inde-

pendent of each other, or vrhether they are the constituent atoms of a

molecule. The number of internal degrees of freedom will be less by
the three coordinates of the center of gra\'ity of the molecule, so that

(6. 49) fi = 3/? - 3,

in which n is the number of atoms in the molecule.

There will be one geometric arrangement of the n atoms in the

molecule which will have the lowest potential energy, and tlie us\ial

convention is to choose this energy as zero. In this equilibrium position

all the atoms may be in one line, in which event the molecule would be

called a linear molecule, or they may not be, and the molecule would be

termed non-linear. A diatomic molecule must obviously always be

linear, as are also a few polyatomic molecules such as carbon dioxide,

CO2 ,
and acetylene, C2H2 . If the molecule is linear, two of the

3n — 3 coordinates, namely, the two angles 6 and 0 discussed in section

2b, will determine only the orientation of the molecule in space with

fixed center of gravity, and will not influence the distance between

atoms, and therefore also not the potential energy. If the molecule is

non-linear there will be three such angles.

The additive contribution to the Hamiltonian due to these angles

will be only to the kinetic energy, and will be of the form

(6. 60) Hrip,q) =
®

r-1 2Irf{qr)

where Qr is the angle, fiqr) is some function of the angle, which may be

just unity, pr is the conjugate momentum to the angle, and Jr is the

moment of inertia in the equilibrium configuration of the molecule

corresponding to the angle qr-

The potential energy will depend only on the remaining 3n — 5 or

3n — 6 coordinates. For a diatomic molecule for which n is two, and

which is necessarily linear, this one coordinate, upon which the potential

energy depends, is simply the distance between the two atoms or, pref-

erably, the difference between this distance and the equilibrium dis-

tance, the f of equation (2. 32).

It will always be possible to choose these 3n — 5 or 3n — 6 coor-

dinates for linear or non-linear molecules, respectively, so that they are

all zero at the equilibrium position of zero potential energy. If the

potential energy is expressed as a power series in these coordinates, the

constant teim gives the lowest value of the potential, which is taken
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as zero, and since the forces must be zero at equilibrium, the linear

terms must also all be zero. The first terms in the expansion will be

the quadratic terms. For sufficiently small displacements one can

neglect the higher-power terms. Now it is a mathematical theorem

that one can always find a transformation to new coordinates, g,, called

normal coordinates, such that there will be only perfect squares occur-

ring both in the expression for the kinetic energy and in the quadratic

terms of the potential energy, so that

(6.51) +

in which Ma the reduced mass corresponding to the coordinate q^,

Pt the conjugated momentum, and the force constant. The choice

of the normal coordinates has eliminated cross products of the sori

(^aiQsQi froni the potential energy.

The total internal Hamiltonian will be the sum of (50) and (51). In

integrating equation (48), the limits of integration for all 3n — 3

momenta will be minus and plus infinity, and the intc^grals for each of

/
+ 00

so that 3w — 3
•00

products of this sort will be introduced into Qj. For the angular

momenta b will be of the form {2IrkTf(qr))'“^, in which, as mentioned

before, /(gr) may be absent, thajb is, be identically unity. Since qr

occurs nowhere else in the Hamiltonian, the integration over the angle

qr, which will be between definite limits such as zero and t, or zero and

2ir, will yield an expression of the type Sf^^^iqr) dqr, and the result

will be some small definite quantity independent of the temperature.

The total contribution of each of the angular coordinates plus its

conjugated momentum to the partition function will then be a product

of the general type {CrlrkTy^^, in which Cr is some smaD dimensionless

number, usually containing ir.

The contribution from one of the vibrational momenta p« will be

{2irptkTy^^, Since equation (51) is valid for only relatively small

displacements, that is, for small values of the g^’s, the whole partition

function will be correctly calculated only if kT is small enough so that

the exponential becomes almost zero for even rather small dis-

placements. The limits minus and plus infinity may then be used for

integration of the coordinates g,. They, then, also contribute integrals

of the typeJ c“***cte = (t/6)*^*, and since b is (a,/2kT), their con-

tribution is each (2irkT/a,y'^.
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The product of the contribution of one of the vibrational coordinates

with that of its conjugated momentum is The
natural frequency v, of vibration of the molecule along the normal

coordinate g* is so that the contribution of this coor-

dinate and momentum to the partition function is just the factor

kT/v..

Finally, inultipl>’ing all these factors together, dividing by //*, and

assigning one }r^ to each degree of freedom, and then taking the log-

arithm, one obtains

or 3n —6

(0. 52) 111 Qi = r In
a = l

The contribution to the free energy F, due to these internal degrees

of freedom, is Fj = — jBTlnQj. The contribution to the energy E,

of the internal freedom, is — RT^ {d/dl') \n Qi, which has the

extremely simple form

(6. 53) Ei = (3w - A)RT or (3n - ^)RT,

depending on whether the molecule is linear or non-linear, respectively.

The internal specific heat is (3n — 4)/i or (3n ~ |)J?, respectively, for

the two conditions.

It is well to examine how far these extremely simple results depend

on the special assumptions made concerning the nature of the molecules.

In the first place it w'as absolutely essential to assume that the class-

ical form (48) could be used for the coordinates considered. The
assumption that the molecule has an equilibrium position of zero

potential, with the interatomic distances fixed, leads to the conclusion

that, for sufficiently small displacements, at least, th(5 potential energy

must be expressible in a quadratic form, and equations (52) and (53)

should be valid at sufficient l.y low temperatures.

At higher temperatures, for which configurations of higher potential

energy are attained, deviations from these equations might be expected.

However, the Hamiltonian for the molecule could always be expressed

in the C'artt*sian coordinates of the atomic centers, although the potential

would have a rather complicated form in those coordinates. In this

form, the kinetic energy docs not include the coordinates, and, if mag-

netic forces are neglected, the potential energy is independent of the

momenta. The momenta occur as squares in the Hamiltonian, and also

in the exponent of the unintegrated partition function, so that inte-

gration over each of the momenta introduces as a factor in Qi, and

an additive ^RT per mole in Ej. The negative potential energy occurs
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in the exponent divided by kT. The integrand of the partition func>

tion, and consequently also the dehnite integral; must always increase,

or at least not decrease, as T increases. Qi, then, recdives a factor from

the integration over the coordinates which either remains constant or

increases with increaang T, and Ei always contains a positive (or zero)

additive contribution from the potential energy.

The heat capacity would have to receive an additive contribution of

at least per internal degree of freedom per mole, at any temperature,

if the classical equation were valid.

Most diatomic molecules have an observed heat capacity Cj at con-

stant volume, of about fE, which, subtracting f for the translational

motion of the center of gravity, leaves only It for the three internal

degrees of freedom. This specific heat is due only to the two rotational

angles. The vibrational degree of freedom, which should, classically,

contribute It to C,, is actually almost completely frozen out by the

quantum conditions. The first excited vibrational level of energy As

above the lowest level (equation 2. 22 ) has an energy considerably in'

excess of kT at ordinary temperatures. Clasacally the average energy

of the molecule in this degree of freedom should be kT, ^kT of kinetic

energy and an equal average potential energy. In the neighborhood of

this energy, however, there is no quantum level, and most of the mole-

cules are actually constrained to remain in the unexcited vibrational

level of lowest energy. Only a very small fraction, of the

molecules attain the first excited level, contributing IiT(hv/kT)e~*'^^^

< jRT to the energy of the mole of gas.

We have assumed that the number of quadratic terms in the classical

potential energy was 3n -- 5 in linear, and 3n - 6 in non-linear mole-

cules. Such molecules as ethane, H3CCH3 ,
might conceivably have

free rotation about the C-C bond, so that here one would introduce

four angles which do not influence the potential energy, and therefore

expect only 3n - 7 quadratic terms in the potential. Actually it

appears that the hindrance to free rotation is great enough so that at

room temperature only a few molecules have sufficient energy to rotate.



CHAPTER 7

DIATOMIC GASES

(a) The Ideal Diatomic Molecule, (b) The Partition Function of aRotator.

(c) The Partition Function of an Oscillator, (d) The General Diatomic

Molecule, (e) The Qaasical Equations for the General Diatomic Molecule,

(f) Molecules Composed of Two Identical Atoms.

7a. The Ideal Diatomic Molecule

A large proportion of all the chemically stable diatomic molecules

have a singlet (]Eo) lowest electronic level without angular momentum,
and no other electronic level with energy low enough to become appre-

ciably excited below several thousand degrees. The low internal energy

states of such a molecule will depend on three quantum numbers, v, j,

and m, associated with the coordinates pving the displacement from

the equilibrium distance between atoms, and the two angles of the axis,

respectively (compare section 2h, example 4). The lower of these

states will be approximated fairly accurately by a formula giving the

energy as the sum of two terms, one depending on t alone, and one on

j (equation 2. 33). The energy does not depend on the value of m.
A molecule for which this was strictly true might be termed an ideal

diatomic molecule.

The ideal diatomic molecule will be defined as one whose internal

energy is given by the equation

(7. 1) + + +

with

(7. 2) I “ /»fo.

minii
H •

Wi -f rrt2

I is the moment of inertia, /i is the reduced mass, ro is the equilibrium

distance between the two atoms of masses mj and mj, and v is the natural

frequency of vibration of the molecule along the line of centers of the

two atoms. The quantum number m, which does not occur in the

equation for the energy, gives the projection on an arbitrary axis of the

total angular momentum vector of magnitude j. The values which m
can take depend on j, namely, 2j -I- 1 values differmg by integers from

149
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— j to +j. In order to simplify the writing of subsequent equations

it will be convenient to define two new quantities, u and a, so that

(7. 3)

(7. 4)

hv hu)C

kf^Tf'
hBc

Sv^lkT kT ’

where (u = v/condB — /i/8ir^/c, of dimensions cm"^, are most frequently

found tabulated in the literature. Values of these constants for some

diatomic molecules are given in the Appendix table, A XII.

Since equation (1) assigns the energy hif/2 to the lowest state of the

molecule with v = 0 and j
~ 0, which is obtained by measuring the

energy from the lowest part of the potential-energy diagram of the

molecule, we will change the equation in such a way as to measure

the energy from the lowest quantum state. Using (3) and (4), we
then obtain

(7. 5)
kT + j(j + l)cr.

It is obvious that since the energy is written as the sum of a term

depending on v alone, and one depending on j alone, we can separate

Qi into a product of two terms, in the same way that Q was separated

into Qk • Qi,

(7. 6) =

The equations for Q^, the partition function for one degree of freedom

in oscillation, and Qjmi the partition function of a two-dimensional

rotator, are

(7. 7) Q, = Z
>o

(7.8) Ojm = 2:(2j +

+

3>0

in the second of which the summation over m has been performed,

resulting in the multiplication of every term by (2j + 1).

The terms of are to be summed over all integral values of v equal

to and greater than zero. In the sum Qjm, however, there are three

different possibilities. If the molecule considered is one of a com-

pound, that is, if the two atoms composing it are not identical, but are

of different elements, or even if they are atoms of the same element but

of two different isotopes of the element, then j takes all integral values

equal to, and greater than, zero. If, however, the two atoms com-
posing the molecule are identical, then for any given mutual orientation
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of the nuclear spins of the atoms either only the odd values of j, or only

the even values of j, correspond to possible states of the molecule. The
reason for this difference between molecules composed of identical

atoms and those composed of two different kinds of atoms has already

been discussed to some extent in the paragraphs in fine print of section

fig, in which its influence on the entropy of nuclear spin was discussed.

We shall treat the subject later (section 7f) at greater length. At the

present time it will be sufficient te notice that the three different cases

may occur: that for which all integral values of j are allowed, and which

will be designated by that for which j may take only odd values,

QjmoJ or that for which it may take only even values, Qj®.. The two

last conditions can occur only in elements.

7b. The Partition Function of a Rotator

The partition function for a rotator, a body with finite (and equal)

moments of inertia, 7, about only two axes, is given by equation (8),

in which j may take all integral values, Ojnifi or only even values, Qj^ei

or only odd values, Q^. Obviously

(7, 9) Qjme Qjmo ” Qjmt*

If (8) is used for only odd j values, the lowest level, for which j is

equal to unity, is assigned the energy 2kT<f. This would be in contra-

diction to our agreement always to assign the energy zero to the lowest

level of the molecule. We shall designate by Qjno the partition func-

tion for a rotator having only odd levels with the energy scale so chosen

that the lowest level with j = 1 has zero energy. It follows from the

argument given in section fif that

(7. 10) ^mo ~ Q\i

Both the free energy and the energy calculated from Qjno will be smaller,

per mole, by an amount 2RT<f than the values calculated from Qjnu,.

The specific heat and entropy will be the same from both partition

functions.

The molecule H2 has the smallest moment of inertia of any molecule,

and consequently, from (4), the largest value of TV, namely, 84.971®.

Iodine has about the largest I encountered in a diatomic molecule which

can be obtained gaseous at moderately low temperatures. The value

of TV for I2 is 0.05340®. Between these two extremes, TV for HCl is

14.94fi®, for N2 it is 2.847®, and for O2 it is 2.059®. It is seen that,

except for H2 , the value of c at or above the boiling point is fairly low

for all gases. The values at the boiling points are 4.18 at T = 20.3®K.

for H2 , 0.079 at r - 189.4®K. for HCl, 0.037 at T = 77.3®K. for N*,

and 0.023 at T = 90.1®K. for O2 .
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It is for H2 alone that one is interested in the partition function for

values of c of about unity or greater. For this molecule it is essential,

and not very difficult, tosum equation (8) by actualnumericalsummation,

term by term. If ir is small, however, the terms of (8) converge very

slowly and numerical summation becomes tedious. It is possible, then,

to use an easy approximation method known as the Euler-Maclaurin

summation formula. This method approximates the sum of a function

of j, extended over integral values of j, in terms of the integral of the

function and successive derivatives of it at the value of j corresponding

to the first term. The method is applicable, of course, only if the suc-

cessive terms of the approximation converge, and, as might be expected,

when applied to (8) it is found that the convergence is good for only

small values of ir.

Actually it is found that the method works fairly successfully for tr

as large as unity for Qjmt, although the approximations for and

Cjmc the contribution to the energy and the specific heat, respectively,

are accurate only for somewhat lower values of (r. For and

Qjmof for which j takes values differing by 2, it is easy to substitute 2k

and 2k + 1, respectively, for j, so that the summation goes over all

integral values of k. The convergence is considerably poorer in these

cases than in the summation over all j values, and the approximation

formulas derived are valid only if is less than or equal to about 0.2.

The range of values of c for which the approximation formulas, or

direct summation, are to be used is largely a question of convenience,

and dependent on the desired accuracy of the results. We shall show

the application of the summation formula to (8).
n-'OO

If £ /(*^) is the sum, extended over values of n differing by integers,

from a to infinity, of a function, /(n), then the sum can have a finite

value (be convergent) only if the function and all its derivatives are

zero at infinity. We may denote by /(x) the same function of a con-

tinuous variable x. The first term of the sum will be Jia). The
symbols /(a), /*“(a), and f^{a) may be used to designate the first,

third, and fifth derivatives of the function with respect to x, at x == a.

The Euler-Maclaurin summation formula gives

(7. 11) “if /(n) = Cm dx + A/(a) - ^f(a) + ^/‘"(a)
n-o

"" wjhnr/^(®) H •

This formula is also discussed in Appendix A III. The approximation

is valid, of course, only if the sum on the right converges.
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Applying this* to (8) for for which j takes all integral values^

and the first value, a, is zero, the function f{x) is seen to be

(2x + The first term of the sum on the left-hand side,

obtained by substituting zero for'x in f(x), is unity. Differentiation

and subsequent substitution of zero for x give (2 — <r) for /^(O),

(-12a + 12^2 - <r®) for /”^(0), and (120^^ - I80a® + 30cr* - a*) for

/^(O). The next odd derivative would begin with a cubic term in a.

The integral can easily be found by substituting the new variable

z = x(x + 1), dz = (2x + 1) dx, obtaining

(7. 12) f fix) di = /’*(2x + dx = f^e-" dz ==-
Uq Jq Jq a

If these values are substituted in (11), and terms of higher than the

second power in a are omitted, one obtains

(7.13) + § + ^ +^ +

The limit of validity given, that a must be smaller than or equal to

unity, is the limit for calculations within 1 per cent. For larger values

of a one must use

(7. 13') Oja* = 1 + Se-*- + 5e-«' + 76“**',

which are sufficient terms to give the sum within 0.1 per cent at

a = 0.7. Fewer terms need be used as a increases.

If now the Euler-Maclaurin summation formula is applied to Qja„

in (8), for which j takes only even values, the substitution of 2k » j

gives a sum over all integral values of k, and the function /(x) becomes

(4x + i)p--2*(2x+i)a integral of the function from zero to infinity

is just half the previous value, or l/2<r. The first term of the sum is the

same as before, and the nth derivative is 2Mold greater than with

Qjm(- Substitution of the corresponding values in (11) leads to

Qjm« = Qim«/2, an equation which is valid for small values of a. How-
ever, the sum of (11) does not converge nearly as rapidly, for the same
value of 0-, when used for Qjaw as when used for Ojmi, and indeed one

can see that with a = \ the convergence of (11) for is about the

same as it is with cr = 1 for The special order of collecting terms

of the same power of a gives the illusion in the equation for cor-

responding to (13) that the sum is convergent up to relatively large a

values, whereas this was actually not so at all in (11). Consequently,

* This leads to the same result as that first obtained by H. P. MulhoUond, Proc.

Cambridge PhU. Sac., 24, 280 (1028).
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it is illusory to include the last correction ierm of (13) in the equation

for Qftne-

Since, within the range of validity of the approximation method,

Qjm« is just half of Qjttt, it follows from (9) that Qjmo = Ojme- The
correctc‘d partition function for odd states, Qfnio, calculated by assigning

the energy zero to the level j = 1, is from (10). The equations

are, then,

(7.14) = = + ‘'^0.3,

the limit of validity, as before, being assigned for calculation within 1

per cent. At higher values of tr one must use

(7. 14') = 1 +

Qj«. = ^ 7^-12cr ^ ^

<?Tmo = 3 + + llc“28«r + i5^-54a

The contribution to the various thermodynamic properties of the gas

due to these internal rotational levels can then be immediaU'ly calcu-

lated by means of equations (6. 25') to (G. 29'). In taking the loga-

rithm of the sum 1 + <r/3 -[-••• it is convenient to use the approxi-

mation that In (1 + x) = X - + • • • . The quantity a is inversely

proportional to the temperature, (4), so that T{d/dT)a — —cr. The

equations for the high-temperature approximations follow. The low-

temperature range occurs so seldom that it seems to be unnecessary to

make the special developments which arc most convenient for numer-

ical calculations. Tables of the functions for high values of <r are to be

found in Appendix A IX.

The limits of validity given after the expressions are those for which

the approximations give the functions within 1 per cent or better. The

equations are:

(7. 15) Fi = -flrinQi,

II
<r 8(r® \

In <f
- - - — -

,
ff < 0.95.

yI IIf -je7'(ta. + to2-:-i'). <r < 0.36.

f 7<r cr®\

ta. + h2----), <r < 0.35.
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(7.16) E,- 12r*^ln(2„

“ ®jmo “ Ejni#, O’ < 0.3.

EU = /2r(i - J-^). <^<0-3.

(7.17) Sj = ft-^(TlnQ,) +

Sjm« = ^1 — In <r
- < 0.9.'

90 2835/
“

Sjtw# — Sjttin — Sj*in^
“
= r(^i -ln<r-ln2-^,ff< 0.3,

16(r®\
a < 0.8.= R\1 + — +

945/’

Cjm^ “
Cjni|0

= =“ ^Imti ff < 0.2.

In Figs. 7. 1,7. 2, and 7. 3 the functions F/RT, E/RT, and C/R are

plotted against a.

F/RT for all j values and for even j values goes exponentially to zero

as T decreases, a increases, the molecules all settling into the single

lowest state for which j = 0. For odd j values the molecule all seeks

the lowest level of three states for which j
= 1 as the temperature

decreases. This level has an entropy In 3 per mole. If the level is

assigned zero energy, F^o/RT becomes asjrmptotic to —In 3, but when

assigned the energy 2kT<r, the corresponding function F^o/RT becomes

asymptotic to 2a — In 3.

E/RT is seen always to approach unity at infinite temperature and

to go exponentially to zero at low temperatures, except for E^/RT^
which approaches 2<r, the energy assigned to the lowest level divided

by AT.

C/R has the classical value of unity at high temperatures, increases

at first as r is lowered, then decreases exponentially to zero at zero

temperature.
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The difference in energy between the lowest and the first excited level

is different in all three cases. For all j values it is 2 measured in units of

kTc. For only even j's the difference is 6 in these units, and for only

Bipi mV iSSi
SSH—

Only oddf s (correctec
energy of

for

;=1)H J?
RT for Rotator

Ibi
0.0 Infinite 0.5 1.0 1.5 2.0 Low
temperature a-hy{8^^IkT) temperature

Fic. 7. 1. Free Energy per mole due to rotation, divided by RT,

odd j’s it is 10. Correspondingly, all the functions approach their

asymptotic low temperature values at lower a values, that is, at higher

0.0 Infinite 0.5 1.0 1.5 2.0 Low
temperature ar^hy(8*tr^JkT) temperature

Fig. 7- 2. Energy per mole due to rotation, divided by RT,

temperatures, for odd j values than for even j’s, and lower a values for

even j's than for all j's.

C/R and E/RT both approach unity at high temperatures for all

three cases, that is, w’^hether all j values, or only the odd, or only the
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even, levels are available to the molecules does not affect the average

energy at sufficiently high temperatures. If, however, the two atoms

of the molecule are identical, so that only half of the rotational levels

are available to it, whether they are the odd or the even half, the effect

Rotator

B Events only

H Dddi's \

1 j values

N
B

0.0 Infinite 0.5 1.0 ,
1.5 2.0 Low

temperature o^hyiBV^IkT)—^ temperature

Fig. 7. 3. Heat capacity per mole due to rotation, divided by R .

is to make the value of the entropy lower by just In 2 per mole at

high temperatures. Correspondingly, the value of the free energy is

increased by RT In 2 if only half of the levels are occupied. We shall

see in section 7f that this also follows from classical considerations.

7c. The Partition Function of an Oscillator

The value of hv for any given molecule is always greater than the

value of h^/{8w^I)j so that the quantity m, equation (3), at a definite

temperature, is greater than the value of a, equation (4), For most

molecules, and for ordinary temperatures, u is considerably greater than

unity. The quantity hv/k, which is frequently assigned the symbol 6,

has the value 5958° for hydrogen, the highest value of any diatomic

gas, and is 305.1° for iodine, which is about the lowest value encoun-

tered in a chemically stable diatomic molecule which can be obtained

gaseous at ordinary temperatures. At 300°K. it is seen that u is 19.86

for H2, and 1.017 for I2 .

The sum of equation (7) is the partition function of an oscillator.

The sum is of the general type 1 + + (e"””)® + • • *1 and

since e“”“ is necessarily smaller than unity, this sum can be expressed in

closed form by

(7. 19) Qv = (1 -

At ordinary temperatures u is appreciably larger than unity for most
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molecules, e*““ is small, and is scarcely greater than unity. In is

then very small and the vibrational contribution to the thermodynamic

functions is almost negligible.

For rather high temperatures, u about equal to unity or less, a

useful approximation can be made by expanding the exponential as a

power series in w, = 1 — w + — . . . . The algebra is straight-

forward. The result,

(7. 19') Qv = 1 4_ - + ii-

2 12

is exactly what would be obtained by application of the Euler-Maclaurin

summation formula (1 1 ) to the sum of (7). This can be readily verified,

since the continuous function is just the integral of which from zero

to infinity is vT^
,
the value of the function at x = 0 is unity, and the

nth derivative at x = 0 is just (— w)“.

In taking the logarithm of the form (19') for the usual development

is made of In (1 + aj) = x — ^x^ + • • • . Since u is inversely propor-

tional to T, (3), one has Tdu/dT = —n. Substitution in equations

(6. 25') to (6. 29') for the contribution to the various thermodynamic

functions offers no difficulties. The equations are:

(7. 20) = -i?rin = RTln (1 -- «-“)

u u*" \

(7. 21)

(7. 22) S, = fibrin Q, = - In (1 - C-)J

= J?(l +
\ 24 960/
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(7 . 23) C, =
dT dT

R
u^e“

(e“ - 1)'

The second term in the equations for and is —\RTu. This

term is temperature independent, since u is inversely proportional to

the temperature, and, by replacing u with hp/kT and noting that R/k
is iVo, Avogadro’s number, the term can be written as —^Ni^hp. In

section 6f, equations (6. 37) and (6. 38), it was found that an altera-

tion in the zero from which the energy of the molecules was measured

resulted in a corresponding change in the value of £ and F.

By using (5) for the energy of the diatomic molecule the zero of

energy has been so chosen that that of the lowest quantum level is zero.

As a consequence (21) gives zero energy to the system at absolute zero

temperature. This choice of zero from which to measure the energy

of the molecules is not the usual quantum-mechanical one of equation

(1), which was so chosen that the lowest point of the potential-energy

diagram of the molecule should be zero. The two differ by \hp per

molecule or ^Niyhp per mole, just the value of the second term in the

development of the free energy and the energy of the system.

The free energy and energy, according to our equations, are, then,

less, by exactly ^Nohp, than they would have been found to be if the

zero of energy had been chosen as the lowest potential energy of the

molecules, and if this latter choice had been made, the equations obtained

would have been those of the last lines of (20) and (21), omitting the

constant term The equations for entropy and heat capacity

would have been unaltered.

We shall later see, section 7e, that, wuth the omission of these constant

terms, the terms in the expansions of equations (20) to (23) which do

not approach zero at high temperatures are the same as the expressions

obtained with the classical partition function, in which case, of course,

the zero of energy is chosen as the lowest j)Otential cnerg}*' of the

molecule.

The functions Fy/RT, Ey/RT, Sy/RT, and Cy/R are plotted against

u in Fig. 7. 4. It is seen that all of them approach zero at the absolute

zero of temperature, and indeed they are all small at w = 5 to 10, which

is about the value of u for most gases at room temperature. Since the
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vibrational contribution to the heat capacity is often negligible, and the

rotational contribution has the classical value R, the total heat capacity,

at constant volume, of most diatomic gases is 5R/2 or about 5 cal. per'

deg.

Fig. 7. 4. Thermodynamic functions of one mole of monochromatic oscillators.

7d. The General Diatomic Molecule

Although very many real diatomic molecules have only a single elec-

tronic state which is important^ up to temperatures of several thousand

degrees, the approximation of equation (1) for the energy due to rotation

and vibration is never exact, and deviations from it are often appre-

ciable for levels whose energies are comparable with kT at as low as

500®K. The next and fairly satisfactory approximation for the energy

in terms of v and j is

«!=(+ i)hVe - X,(V + l)^hPe + j(j + 1)

-DMHi + 1)" - «Ac(v + §)j(j + 1),

or, in terms of wave numbers,

(7. 24) ^ = (V + - (V + + ia + 1)B.

-j"a + - (V + i)j a + \)a.

An alternative form is frequently found in the literature, in which the

energy of the lowest level, v = 0, j = 0, is taken to be zero,

«i
= vci>o — v®Xo“o + j(j + l)5o

- 7j(j + !)«•

(7. 24')
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For the alternative forms (24) and (24'), the relations

(7. 26) 0)0 = o),(l - *.),

(7. 26) Xo = x.(l + Xe) S x„

(7.27)

must hold for any molecule. The quantities a and have the same
value in the two forms.

Equations (24) or (24') are essentially empirical developments in

powers of the quantum numbers, the terms proportional to (v + ^)^

or v^, j^(j + 1)^, and (v + i)j(j + 1) or vj(j + 1) being introduced

as first-order corrections to the simpler equation (1) involving only two
terms. The development may also be made using the perturbation

theory and quantum mechanics. It is then seen that the dimensionless

quantity x* is due to the deviation of the true potential energy of the

molecule from the Hooke’s law equation, C7(f) = If the potential

is assumed to be given by the expansion U(() = ^af^(l — +
I7b(^/12]), which is the expansion of the Morse function, then x* is

related to 6 by the equation

(7. 28)
1

with n the reduced mass. However, theoretically the quantities D,
and a are determined by /«, and x«. The relationships

(7. 29)

(7. 30)

= 47^

which also may be taken as definitions of the new dimensionless quan-

tities 7 and 5, are not always found to be strictly obeyed by the values

of Oe and a found empirically and tabulated in the literature. This is

not very surprising, since the empirical values always contain a certain

averaged correction due to still higher-order corrections to equations

(24) or (24'). Nevertheless, (29) and (30) are frequently useful where

De and a have not been determined spectroscopically. In general, if

the experimental values from which they have been taken are reliable,

the empirical values of De and a are preferable for our purposes to the

theoretical values of (29) and (30), just because they give a better
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approximation to the actual levels by empirically taking into account

the averaged higher-order corrections.

Both (24) and (24^ have the disadvantage that the frequency

or 0)0 does not give the difference in energy between the lowest and first

excited vibration level. By writing the equation in such a way that

the difference in energy of the two lowest vibration levels enters directly,

the equations of the past section will give the contribution of vibration

to the thermodynamic properties most accurately, and the correction

terms which will be developed in this section will be smaller at any given

temperature.

We shall, consequently, use

(7. 31)

where,

(7. 32)

(7. 33)

^ = v« - a:v(v - 1)m+ j(j + l)[l -4Y“*j(j + l) - 5v]<r,

6 hv ho)C hweC
. ^ . }iu)qC.

^

U = — =‘ —(I - 2I,) = -7^(1 - Xo),
kT kT kT kT

BM _ ,

kT kT^ ^ ’

The internal partition function Qi is the sum of the exponential of

minus the energy over kT, extended over the quantum numbers v, j,

and m, and will be designated by It is given by the equation

(7. 34) = ’if 'if (2j +»0 j “0

This sum must now be evaluated.

To do so, we first sum over j, using the approximation method of (11),

by integrating and adding one-half the value of the first term and sub-

tracting one-twelfth of the initial derivative. In the integration, as

in (12), the variable z is substituted for j(j + 1), with dz = (2j + l)dy

In the initial derivative the term proportional to a is neglected, so that

the approximation is carried to two powers of a less than in deriving

(13). One obtains

(7. 35) (2j +
j-o

11
0 2 6

The ihtegral, as also the original sum, would be infinity, if integrated
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(or summed) correctly. This is because the positive part of the expo-

nential, proportional to the square of the variable, becomes predominant
at large values of the variable. The error, of course, is introduced by
the use of the approximate equation (31) which is not valid to infinite

j’s. One nevertheless can obtain a correct approximation by expand-

ing the factor before integration into 1 -|- and then inte-

grating. obtaining

^ /**(! + 47^)6 dz

^ ff~>(l - «v)“*(l + 87V)
^ <r“Hl + + «v).

Inserting this in (35), one obtains

(7. 36) (2j -I-

i-o

* -|- 6v^

The use of (36) in (34) yields

(7. 37)
v-0 \ O a /

,-tt[V-XT(V-l)J

Again developing as 1 + U3r9{y — 1) + • •
•

,
and using this in

(37), one arrives at

(7. 38) Q,

-00 /

= Z
T-O \

1+I +— + (s - xu)v + a:uv®V
3 <r /

The sum, £e“*", has already been found to be (1 — e~“)~*, (19);

and the sum ]Cve~“’ is (—d/du)^e~", which is e~“(l — e~“)“*.

Similarly, the sum 2Dv^c~“’is found to be c““(l — e~")~® +
2e~*“(i — e““)“®. Using this in (38) finally yields

(7. 39) = J \i +5-|.g2! + —L ..
. + . .1.

- c-“)L 3 ^ «r
+ e» - 1 ^ (e“ - 1)*J
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Upon developing In (1 + *) = ® , the equation for In is

seen to be

(7. 40) In - -In (T + ^
- In (I - c'")

4. j.
^

_l_

2m
a "^6“- l"^ (e“- 1)“

The first two terms of the above expression are the first terms in the

old development, (15), for In Qjnu, and the third term is the expression

(20) for In Qy. The last three of the terms are new correction terms

which vani^ at low temperatures.

We may define the correction term In Qc as the difference between

In Qvjm and the sum of the two approximations obtained by the use

of (1) in w’hich the contributions of the rotation and vibration to the

energy are separated, In and In so that,

(7. 41) In Qc = In ~ Qjm - In Qv

From (29) it is seen that y = Neglecting the small difference

between and Bo, between a>e and w, using (32), u — whc/kT, and

(33), <r = Bohc/kTf one may WTite y = a/u, Sy^/a = Sy/u. One then

finds

(7. 42) lnQc = «-^[8Y + 5p^ + 2x^pr^]-

Since the term In Qc is important only at high temperatures where

u is moderately small, the expansion of the first two expressions of

(21), w/(c“ — 1) = 1 — u/2 + u^/\2 — u^/720, and consequently

u^/{e^ — 1)^ = 1 — w + 5uVl2 ~ u^/l2 + u*l240, may be used.

The equation then takes the form

(7.43) lnge = M~M87 + 5 + 2x) -Q + 2i)

In these expressions, y, 5, and x are dimensionless and independent

of the temperature. The quantity u is inversely proportional to the

temperature, (32). Although the development (43) has temperature-

independent terms and terms w'hich grow wnth decreasing temperatures

it is evident from the unexpanded form (42) that In Qc approaches zero

with decreasing temperature, as u becomes large.
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Of the quantities 7, 8, and x, only two are independent according to

equations (29) and (30). We may use the two, y — v/'u, and x, as

independent, writing (30) in the form

(7. 44) 8 = - 67.

and so further simplify (43) to

(7. 45) In Qc = tt-‘(27 + dy^l^x^’’^ + 2x) + (Sy - - 2x)

+ ^(-37 4- 37*'V'* + 5a:) - “ a: +^ (7 - y
^>^x''^+ x )

.

Since T{du/dT) = — u, it is no great chore to perform the necessary

differentiations in order to calculate the additive contributions of these

correction terms to the various thermodynamic functions of the gas.

Using (45) one obtains

(7. 46) Fe = -RT In Q. = RT^-u-H2y + + 2x)

— (37 — 37*^V^* — 2t) — "(— 37 + 37*^V^® + 5x) +^x
6 6

- ^(7 - 7
-'V'» +

(7. 47) Ec = AT®^ In Qc = RT^u-^ (27 + 67^'V'* + 2i)

- + 37’^V'“ + 5x) + y* - ^(7 - 7*'V'* -h x) + •

• j*

(7.48) Sc = fl(T'^InQc-lnOc)

=s (47 + 127*^®x^^* + 4x)

+ (37 — 37’ — 2i) + —X
6

- ^(7 -7''V'* + x) + • •]•
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(7.49) c,-R±r‘±\.Q.

= + 4a:)

- ^ ^ + ^(7 “ 7^'V^2 + x) H
J

•

The aetual numerical values of the quantities 7 and x vary from

1.43 Ur^ and 2.736 respectively, for H2, to 0.0175 10“^ and

0.278 10~^, respectively, for I2. The coefficient of the term RT/u in

Fc and Ec is, then, 0.2018 for H2 and 0.0101 for I2. However, uT = B

is 5958® for H2 and only 305.1® for I2, so that Sii T = 500°K., u = 1 1.92

for H2 and 0.6102 for I2. The first term in the development (46) for

I2 is — 0.0165/2T = —16.5 cal. at 500®K. The whole correction,

Ff, is — 1 1 cal. at this temperature for this gas. For hydrogen at this

temperature, with w = 11.9, the development of (46) is invalid and

we must use the undeveloped e(iuation (42). The only term w hich is

appreciable at this temperature is the first, —RTSy/u, in F^ and its

numerical value turns out to be —9.6 cal. at 5(X)°K. This term is due

only to the rotational stretching.

Since the whole free energy of these gases is about a thousand times

as large at these temperatures, the eorn'ctions amount to about 0.1

per cent, but they increase rather rapidly in importance as the tem-

perature rises. It is seen from the values givtm that the corrections

are of the same order of magnitude for the two gases Ho and lo at the

same temperature, although the valutis of 7 and x are very different.

This is not so surprising, since the correction terms depend mostly on

the shape of the potential energy function at the energy corresponding

approximately to kTy which is roughly the same for all molecules having

about the same binding energy. Actually N2, which has an abnormally

high binding energy because of the triple bond, and consequently, in

spite of the high reduced mass, almost as high a value of uT = 0(3336.6®)

as H2, shows only about a third as large correction terms as H2.

For H2* and some other molecules, especially those containing a

hydrogen atom, the corrections become appreciable at temperatures

where u is much greater than unity and the expanded eciuations (46) to

(49) are not applicable. For these cases the unexpanded form (42), and

the equations derived from this form by differentiation, must be used.

* W. F. Giauque, J. Am. Chem. Soc., 52, 4816 (19^0), and also Clyde O. Davis and

Herrick L. Johnston, ibid., 66, 1045 (1934), found it desirable to calculate Qi for Hs
by summation of observed numerical energy levels, instead of attempting to use

correction equations.
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7e. The Classical Eqtiations for the General Diatomic Molecule

In sections 6b and 6j it was shown that the classical analogue of the

quantum-mechanical partition function is obtained by integrating over

all coordinates and momenta the exponential of the negative of the

Hamiltonian divided by kT. The internal coordinates of the diatomic

molecule are the two angles 0 and B and the distance ( of stretching

from the equilibrium distance Tq of the two atoms. These coordinates

have already been discussed in section 2h, example 2.

Since the classical approximation is valid only at high temperatures,

for which the deviations from truly harmonic vibration are appreciable,

it will be found advisable to take deviations from the ideal form of the

potential energy into account; that is, we shall not assume, as in sec-

tion 2h, that C/(f) = It will also be necessary to consider, at

least in first approximation, the influence of the motion on the moment
of inertia I; that is, departing from our practice in the example in

section 2h, we shall write I explicitly as a function of I (£).

The most satisfactory simple general equation which has been found

to give the potential energy of a diatomic molecule as a function of the

coordinate f fairly well is the Morse function,

(7. 50) C7(€) = ^(1 -

This function is so chosen that its minimum value at ( » 0 is zero.

Expanding the exponential, one obtains.

(7. 51) t/(t) = - KA^f + KA*^

for low values of {.

If this is written in the form

(7. 51') Uii) = Joi* ^ +•••).

one sees by comparison of the two forms (51) and (5l') that

(7. 52) a = 2XA^ fc = A.

The experimentally observable quantity i«, which occurs in the

equation for the energy of the various vibrational levels of the molecule,

« = (v + i)hve — (v + is found by quantum-mechanical

calculation to be related to b by the equation*

hve hvjb^

“ 4X
” '(7. 53)

* See, for instance, Pauling and Wilson, IrUroduclion to Quantum Mechanic$t

McGraw-Hill, New York, 1935, page 271.
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Remembering that (a/n)(l/Air^) = v? = (equation 2. 21),

where n is the reduced mass, and using Be = h/{8r^lec) (equation 4),

with le = ^l1Q, one can express bro as

(7. 54) fcro =

where the y of equation (29), y — Btju,, has been used. This equa-

tion will be used later.

The Hamiltonian for the diatomic molecule may be written (compare

equation 2. 32) as

(7. 56)

where

(7. 60)

H =
27({)

/(«)

The integration of the exponential of minus the Hamiltonian divided

by kT must be made over the three coordinates <f>y 6, and f, and over the

three momenta conjugate to these coordinates, p^, p^, and P(. The
limits of integration are plus infinity and minus infinity for the three

momenta, and these limits may also be used for f. The limits are 0

to TT for dy and 0 to 2ir for 0. The expression for Qi, corrected by division

with h^y to obtain the dimensionless quantity consistent with the

quantum-mechanical equations, is thm

(7. 57)
1

/•2ir pco pGO pZO

/ // / /n t/_oo ^0 t/o «/-.oo -00'' -00

in w^hich equation (55) must be substituted for H{pyq),

Integration over each of the three momenta is of the type

/
4-00

e““*’ dx = {r/ay^, so that three products of this type are intro-
* 00

duced into Q. The angular coordinate ^ does not occur in the Ham-
iltonian, so that integration from 0 to 2» just gives 2t as a product.

From the integration over p* one obtains (2ir7({)fcr)*'® an 9, and since

sin 0 d0 = 2, subsequent integration over the coordinate 9 yields 2.

0

The integration over ( remains to be performed, so that one obUuns
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1 /•+**

(7. 58) (2irIii)kT)^'^ (2T7(t)jfcr)^'® • (2rfJcT)^'^

This may be shortened by using (56) for/(t) and &r^IJeT/h^ - a,"*,

equation (4). Further, since = hv,/kT •= h{afii)^^^/2vkT, one may
multiply and divide by (2x^:T/o)*^^, obtaining

(7. 58')

If, in this expression, b is taken to be zero, and the term £/ro is neg-

lected, one may use

(7. 59)

^+00
and the integral becomes I (

*/^00
e dz — The first approximation,

which neglects the change of / with rotation or vibration and also

neglects the deviations from Hooke’s law, is obtained, that

(7. 60) Qi = (iTeUerK

It will be found convenient to substitute the variable z, (59), for

and to note that

(7. 61)
2kT 4.ir^k^T^n

arl
“ ^

* SirWokT ’ h^a

Combining (59) and (61) with (54), bro ~ one finds that

(7. 62) bf = bro

and from (59) and (61) alone,

(7. 63) ^
The use of (62) and (63) in (58') leads to

(7. 64) Qi =—

^

r^*(l + 2«r‘'V'®*)*
ffeUeir ‘ J ^OQ

The small terms of the exponential may now be expanded in powers of z,

the expansion multiplied by the square of the term in the brackets, and
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the whole expression carried out to terms of the first power in 7/M, or

One obtains

(7. 65) Qi ^72 fl +
(r,M,7r t/.QQ L

+ ^
** + 2a:,u7‘2®

J
c~**d2.

/
+

0O

2"c~*’ dz is zero if n is odd. For n = 0, 2, 4, and 6,
-00

it is respectively and 15tr‘^V8* One obtains for Q|

(7. 66) Qi =— [l + - (2y + + 2x.)l •

The logarithm is, as usual, developed, In (1 + x) = x — • •
•, when x is

small, so that

(7. 67) InQi = -Incr, - Inu, + + 2xe).

The equivalent quantum-mechanical expression is the In Q^jn of

equation (40), which has to be developed in a power series of u for com-

parison. The same result may be obtained directly by taking the nega-

tive of the equations for the free enei^ F, and dividing by RT, using the

sum of the expanded forms given in (15), (20), and (46) for the rota-

tional, vibrational, and interaction contributions, respectively. Neg-

lecting terms of higher than the first negative power of T, one obtains

(7. 68) In Qj (quantum mechanical) = —Incr-b^ — InM
o

+ ^ + m“‘(27 + + 2i) -I- (3y - - 2i)
A

+ ^(-37 + 3*»/V'* + 5*).
D

In this expression, however, <r and u are obtained from the moment of

inertia in the lowest vibrational level, and from the difference in energy

of the lowest and first excited vibrational level, respectively, so that

(7. 69) <r = (T.d - i6) * <r.(l - 3**'V'* + 87),

from (33) and (30), and

(7. 70)

from (32).

u = «,(1 — 2x)
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The quantum-mechanical expression (68) also differs from the classi-

cal expression (67) in that the zero of energy is differently chosen. The
energy cqo of the lowest quantum-mechanical state is kT (^u, — -^XeU,)

higher than the lowest potential energy of the molecule, so that the

quantum-mechanical In Qi is expected to be greater than the classical

expression of (67) by Ju, — as has been discussed in section 7c.

Using (69) and (70) in (68), expanding In (1 — J5) and In (1 — 2x),

and using <r = uy, one obtains

(7. 71) In Qi (quantum mechanical) = — In (r, — In u,

-I- ur^(^2y -I- 6®‘'V'® + 2*) + ^ + ^(- 27 + 6x^'V'® + ®)
,

in which the small difference between x and has been neglected.

Except for the expected term the only difference between (67)

and (71) is in the small terms proportional to u and therefore to the

reciprocal of the temperature. Terms proportional to higher inverse

powers of T have been neglected in the quantum-mechanical expression;

the largest of these was — w^/24, (20).

It is quite usual to find that the difference between the quantum-

mechanical and classical expressions for In Q is only in terms proportional

to the S(;cond or higher inverse power of T. In the above example it can

be seen that the small terms proportional to arise from a combination

of quantum corrections proportional to and interaction terras

proportional to T,

Returning to an examination of the classical expression (67), since

(Te and We are both proportional to one obtains for the contribution

Ej to the energy, and Q to the heat capacity,

(7.72) E, = i2r2^1nQi

= JJTp + «-*(27 + 6xi'*7''» + 2x.)],

- i2l2 + 2u-H2y + + 21.)].

Both internal energy and internal heat capacity have the classical

values 2RT and 2R, respectively, calculated in section 6f for a diatomic

molecule, plus an additional correction term proportional to “P and T,

respectivdy, which arises from the interaction between rotation and

vibration, and from the deviation from the Hooke’s law equation for the

potential energy assumed in section 6j.
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7f. Molecules Composed of Two Identical Atoms
It was remarked at the end of section 7a that, if the two atoms of a

diatomic molecule are identical and have no nuclear spin, only half of

the rotational levels are allowed quantum levels of the molecule. For

non-zero nuclear spin every second rotational level is allowed for a given

mutual orientation of the spin. In section 7b the partition function of

rotation for the occurrence of only odd and only even j’s was calculated,

along with the case that all rotational levels were allowed.

It was found that, at high temperatures, the partition function for

only odd j^s is equal to that for only even j’s, and to half the partition

function for all j's. The effect is that, at high temperatures, the energy,

(16), andheat capacity, (18), is the same for all three cases, but the mole-

cule with only half of the levels allowed has a lower entropy, (17), by
— /? In 2, and consequently a higher free energy, (16), by RT In 2, than

the molecule with all levels allowed.

The reason for the prohibition of the even or odd j levels is that the

wave functions of rotation are alternately symmetrical and antis3rm-

metrical with respect to exchange of the nuclei, for even and odd j's.

If the two atoms are identical, only wave functions which have a definite

symmetry character with respect to this exchange occur in nature, so

that only odd, or only even, rotational levels can actual^ exist. The
complete consideration of the details of the selection is somewhat compli-

cated by the role of the nuclear spin and will be discussed at greater

length in fine print at the end of this section.

One analogy nia^^ be found enlightening. The necessity of using only

symmetric (Fiinstein-Bose) or only antisymmetric (Fermi-Dirac) wave
functions resulted in reducing the total number of quantum states of a

system of independent particles, from the number mathematically

possible with distinguishable particles, by an amount that was practically

eciuivalent to division by TV ! if the particles were identical and the num-
ber of particles per cell was small. The effect of having two identical

atoms in a diatomic molecule is to reduce the number of quantum states

in a large range of j levels, by 2 !, or to one-half the number of states in

a molecule with distinguishable atoms.

This had already been proved classically by Ehrenfest and Trkal.*

As we have frequently mentioned, the classical phase volume is to be

measured in such a way that points which differ only in a permutation of

the identical atoms are counted once only. It is seen, then, that a

rotation of a molecule consisting of two identical atoms by an angle

around the center of mass corresponds exactly to such a permutation.

The two points of phase space differing only in such a rotation should

* Ehrenfest and Trkal, Froc. Sect. Sci. Amaterdam, 23, 169 (1920).
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then be counted as only one point. In this way, of the possible range of

values of the orientation angles, only one-half lead to intrinsically differ-

ent configurations of the molecule; the phase volume is therefore cut in

half, and the entropy, S — kin W, contains the additive term — fc In 2

per molecule, due to the fundamental identity of the atoms.

To express the same statement differently, the phase volume W to be

used in the equation S ^ k\nW must be calculated by using numbered
particles, and then subsequently dividing by the factorials of the numbers
of identical particles, if the entropy S is to be an extensive property of

the system.

A diatomic gas, A2 ,
containing N identical molecules, each com-

posed of two identical atoms, actually consists of 2N identical atoms of

the element. The phase space of such a system must be divided by
2N 1 ^
This gas must be compared with a gas AB containing N identical

molecules each consisting of two distinguishable atoms of types A and B,

respectively. The molecules, however, will be assumed to have the

same mechanical properties, mass, frequency, and moment of inertia, as

in the first gas. The actual phase space calculated with numbered atoms

will be different from that of the former gas, and indeed smaller by the

factor 2“^. This is seen from the fact that in gas A2 with all atoms

identical any atom can combine with any other atom, loading to 2N !/

2^N ! = 2^N^e~’^ different possible molecules if tlie atoms were

numbered. In the gas AB only molecules in which atoms of type A are

combined with atoms of type B are presumed to be present so that

N ! = different molecules of numbered atoms are present.

However, this phase space calculated with numbered atortis is to be

divided now, not by 2N ! as formerly, but by A’'o ! N^l = N =
phase volume W, corrected by division with the

factorials, will be less in the gas A2 by the factor 2""^ than in the gas AB
of the distinguishable atoms. The entropy S = k In W will be less by

the additive — Jf2 In 2 per mole for an elementary diatomic gas than for a

mechanically similar compound.

That this difference between identical and distinguishable atoms in

one molecule is a necessary consequence of the division of the phase

space of a monatomic gas by N !, and not merely an unnecessary,

although logical, extension of the idea, is shown by the following con-

sideration. Suppose that we calculate S at different energies classically,

for the element consisting of 2N identical atoms. At very high energies

this system will actually be completely dissociated into a monatomic gas

of 2N mechanically (almost) independent atoms, and our convention

demands division by 2iV !. At lower energies there is obviously no dis-
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continuous change in the properties of the system which would allow us

to change this convention. At low energies, however, if the mechanical

properties of the atoms are such as to form diatomic molecules, this will

actually take place, and the system will exist as a diatomic gas of N
molecules.

It is necessary classically to make the division by the factorials of the

numbers of identical particles in the system consistently, whether all

the particles are independent or not, in order to calculate correctly the

equilibria between dissociated and undissociated molecules.

Quantum-mechanical rules for the selection of only symmetrical or

only antisymmetrical wave functions lead to the result that, if nuclear

spin is absent, only odd or only even j’s can occur in a diatomic element,

with resulting decrease in S by the term — -R In 2.

In diatomic elements \vith nuclear spin the same result is obtained at

high temperatures, but in a more complicated manner. If the nucleus

has spin there exist (2Sn 4* 1)^ possible orientations of the two

nuclei in the molecule. Then both odd and even j’s occur, but with any
given mutual spin orientation of the two atoms, only odd or only even j

values are allowed. The total number of states, in a large range of j*s, is

then exactly half of (2Sn +1)^ times the number which would be pres-

ent if the atoms were not identical, and no spin were present. At high

temperatures, where a range of j values can be regarded as having con-

stant €/kTf the entropy of a diatomic element has an additive contribu-

tion 2R In (2Sn 4-1) per mole, due to nuclear spin, and —B In 2 per

molecule to the symmetry. It was stated in section 6g that the entropy

of nuclear spin cancels in all reactions and will always be neglected.

I^t us consider a molecule made up of two identical atoms, that is, atoms

which are both the same isotope of one element. The formula for the construc-

tion of the allowed wave functions for this molecule is first to label the nuclei

of the atoms as if they were distinguishable, and then to pick only those func-

tions which have the correct symmetry character with respect to exchange of

the two nuclei. If the number of elementary particles in the nucleus is even,

the mass number, or integral atomic weight, will be even, since the particles

composing the nucleus are protons and neutrons of unit mass, and in this case

the correct symmetry character is that the wave function be symmetric, that

is, be not altered by an exchange of the two nuclei. If the mass number is odd,

the number of elementary constituents of the nucleus is odd, and the correct

wave functions are antisymmetric, that is, they are altered by only a change of

sign if the two nuclei are exchanged.

In first approximation the wave function can be considered to be a product

of the functions of the coordinate of the center of mass, the vibrational func-

tion, the electronic function, the rotational function, and the nuclear spin func-

tion. The exact wave function may have a somewhat different form and slightly
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different energy from this simple product, but no perturbation whicli may have
been neglected could change its symmetry character, so that one is justified in

using this product to pick the symmetrical or antisymmetrical functions.

The coordinates of the center of mass of the molecule are unchanged by a
permutation of the two identical nuclei of identical masses, so tlie wave function

of these coordinates must also be unchanged, or completely symmetric, in such

an exchange. The vibrational coordinate { is defined as the difference between
the distance apart of the nuclei and their equilibrium distance. This coordinate

is also unaffected by exchange of the nuclei. The vibrational wave function is

consequently symmetrical. The electronic wave function of the lowest level is

already antisymmetric in all permutations of electrons, but may be either sym-
metric or antisymmetric in exchange of the nuclei. The type of electronic

function that makes up the most stable level of almost all diatomic molecules is

symmetric with respect to nuclear exchanges. In order to fix the conditions let

us assume this to be so for the molecule we are considering.

Each of the three functions, translational, vibrational, and electronic, is

unaffected by the exchange of nuclei, so their prodiw^t must also be unaffected

by, or symmetrical .with respect to, this permutation. The symmetry char-

acter of the complete wave function will be that of the product of the rotational

and the nuclear spin functions. The product of two symmetrical functions is

obviously symmetric, and that of an antisymmetric function with a symmetric

one is antisymmetric, whereas the product of two antisymmetric functions is

multiplied by (—1)^ and is unchanged, symmetric, by the permutation of the

nuclei.

The rotational function is a function of two angles, B and defined in sec-

tion 2b as the angles which the axis from one of the atoms to the other makes
with the z axis, and the angle which the projection of this axis on the xij plane

makes with the x axis. An exchange of the two atoms reverses the direction of

the axis and of the projection, changing the value of ^ to tt — 0, and changing

0 to 0 + TT.

It is now necessary to examine the solution of rotational wave equation to

ascertain what happens to the function if in every place that B api)ears one

substitutes tt — and in every place that 0 appears one substitutes 0 + tt.

The wave function is a product of a function of B multiplied by one of 0. The
B function is a product of a power of sin B and a polynomial of cos B of order

j
— m containing only odd, or only even, powers of cos B, depending on whether

j
— m is odd or even, respectively. The ciuantum number m is the number

wliich gives the orientation of the total angular momentum j along the z axis.

The function of 0 is c*®*. The function sin B is unchanged by replacing B

with TT — cos B changes sign in this operation.

The polynomial in cos B is multiplied by (—1)^“® by the replacement of B

with TT — 0, and c*®^ is multiplied by c*® = (— 1 )® upon replacing 0 with

0 -b TT. The total wave function is multiplied by (
— 1)*""®(“-1)® = (— l)Mf

the nuclei are permuted; that is, functions of even j are symmetric, and those

of odd j are antisymmetric, with respect to the exchange of the nuclei.

The next task is to examine the symmetry characters of the nuclear spin
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functions. If the magnitude of tlie spin (in units is Sn, then each atom

may have any of 2sn + 1 spin functions. Let us designate these functions by

a< or by a,-, where i and j run from 1 to 2Sn + 1. If atom o has spin function

aia, and b has the function then the spin function of the molecule will be

otiactjb, or some linear combination of this with the permuted function a^aotib

(section 2k). The S3rmmetric linear combination is aiaajb + otj-aotibt &nd such

a combination will always be possible. The antisymmetric function is

(Xiaajb — oijaotib, but this function is zero if i » j.

There are Sn(2Sn -t- 1) choices of i and j such that i ^ j, and for each of

these one symmetric and one antisymmetric function can be constructed.

Tliere are (2sn +1) values of i = j which can be chosen, and for these only a

symmetric function can be constructed. Out of the total of (2sn + 1)® func-

tions, then, there can be constructed (s* + 1) (2s» + 1) symmetric functions and

s„(2Sn -h 1) antisymmetric ones, with respect to the permutation of tlie nuclei.

If one considers first the simple case that Sn = 0, so that only one spin func-

tion exists f(jr eacli atom, and consequently only one for the molecule, this

single function is synunetric. If the mass number of the nucleus is even the

total wave function must be sjTnmetric, and with a S3rmmetric electronic func-

tion only symmetric rotational functions will be allowed, that is, only even

values of j will be present. If the mass number is odd,* with symmetric elec-

tronic function, only odd j values will lead to the allowed antisymmetric total

wave function of the molecule. With antisymmetrical electronic function, the

situation would be reversed, and odd j^s would appear with even-mass-number,

and even j’s with odd-mass-number elements.

In either case only half of the rotational levels would be permitted, and we

have seen in section 7b that this results, at high temperatures, in an entropy

lower by —i? In 2 per mole than if all j's were allowed.

If the spin magnitude s» is not zero, both even and odd j levels will occur,

but with different degeneracies, that is, with different statistical weights. With

given electronic symmetry character, and given mass number, the odd j values

can occur only with a certain specified nuclear spin symmetry character, and

even j*s with the other. The degeneracy of one of the sets of j levels will be

increased by the factor (Sn + l)(2s» +1), and the degeneracy of the levels of

the other set by Sn(2sn + 1).

On the average, then, out of range of many j levels the number of states is

i(2Sn + 1)® fold greater than for a molecule with all j levels filled and without

nuclear spin. This will result in an entropy term, at high temperatures, of

2R In (2s« -f 1 )
— In 2 per mole. The first of these terms is the R In (2Sn + 1

)

per gram atom of element due to nuclear spin which is present in all compounds

and in the monatomic gas of the element. The second of the terms, *—72 In 2,

is the usual term due to the symmetry of the diatomic molecule with the two

identical atoms.

With nuclear spin, or without it, one always finds that the entropy

of a diatomic gas at high temperatures is —ft In 2 smaller if the two

* Odd-mass-nuinber nuclei never have zero spin.
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atoms composing a molecule are identical than if they are distinguish-

able.

At low temperatures transitions from symmetrical to antisymmetrical

spin states are extremely slow. This is not so much due to any resist-

ance which the nucleus offers to a force tending to reorient it, but rather

to the fact that it is too slippery to be attacked by a force. The only

force which tends to orient the spins is a magnetic one, and that acts

but weakly. Normal collisions with other molecules, except strongly

paramagnetic ones, have no effect.

At high temperatures the equilibrium is such that the ratio of the num-
ber of molecules with symmetrical spin functions to the number with

antisymmetrical functions is the ratio of the numbers of the functions,

namely, (s„ + 1)/Sn. As the temperature is lowered this ratio remains

constant if no catalyst for the transitions is present.

The gas then behaves like a mixture of two kinds of molecules with

fixed ratios of numbers, one kind of which exists only in odd, and the

other kind only in even, rotational levels.

In hydrogen this phenomenon is marked. The moment of inertia is

small, and the energy separation of the rotational levels is consequently

great. The boiling point of hydrogen is extremely low, so that the gas

can be obtained experimentally at very low temperatures. At the boil-

ing point the temperature is sufficiently low compared to the energy of

separation of the rotational levels that the rotation is almost completely
“ frozen '' and that the specific heat is almost exactly that of a mona-

tomic gas.

The hydrogen nucleus has a spin of one-half. There exist three sym-

metric spin functions, (Sn + l)(2Sn + 1), corresponding to the three

orientations of a total vector of unity made up of the two half-vectors

pointing in the same direction. Only one antisymmetric function exists,

Sn(2Sn + 1), for which the two nuclear spins are oppositely oriented with

a resultant of zero. The total number of functions is four, which is

just (2Sn + 1)^. The symmetric functions form what is called ortho-

hydrogen (probably because the spins are parallel), and the antisym-

metric spins form what is called pararhydrogen.

At high temperatures one-fourth of the molecules exist as para-, and

three-fourths as ortho-hydrogen. If hydrogen is cooled in the absence

of a catalyst for the conversion, the relative numbers of the two kinds of

molecules remain constant.

The total wave function of hydrogen must be antisymmetric (change

sign) with respect to the exchange of nuclei, whicli consist of one ele-

mentary proton. The para-hydrogen, with antisymmetrical spin func-

tion, can exist only in the rotational levels of even j values wliich have
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symmetrical wave functions, in order that the product of the functions

shall be antisymmetric. The ortho-hydrogen is similarly limited to the

odd j's.

The behavior of hydrogen will be that of a mixture of the two kinds of

molecules in the number ratio three to one, the more abundant ortho-

hydrogen having only odd j’s with the lowest level of j = 1, the less

abundant para molecules having only even j’s. The lowest energy

which this inhibited system could attain is fATo times the energy of the

rotational level j = 1.

The degeneracy of the lowest level of ortho-hydrogen, j = 1, is three,

due to the nuclear spin states, multiplied by three for the 2j + 1 differ-

ent orientations of the j vector, or nine in all. The entropy of a mole of

ortho-hydrogen in the lowest internal level is In 9 plus the entropy of a

,

monatomic gas. The total entropy of a mole of
**
inhibited ” hydrogen

at a temperature where the specific heat is that of a monatomic gas will

be greater than that of a monatomic gas of the same molecular weight by
the entropy of three-fourths of a mole of ortho-hydrogen, In 9, plus

the entropy fft In
-J- + -J-ft In 4 of mixing of fNo molecules of ortho gas

with ^No molecules of para gas (section 6h). This adds up to ft In

4 + fftlnS.

If a catalyst which is capable either of dissociating the molecules on
its surface, and consequently permitting their recombination in the

lower energy form, or by its magnetic properties of reorienting the

nuclear spins, is introduced into the low-temperature gas, the inhibition

against transitions between ortho and para gas is removed. The mole-

cules will all tend to attain the single low-energy state in which the spins

are anti-parallel, and the rotational quantum number j is zero. This

para-hydrogen has zero energy and zero entropy at the absolute zero.



CHAPTER 8

POLYATOMIC GASES

(a) Introduction, (b) The Number of Degrees of Freedom, (c) Vibra-

tional Contributions, (d) Rotation, (e) The Symmetry Number.

8a. Introduction

The purely statistical part of the problem of calculating the thermo-

dynamic functions of a gas composed of polyatomic molecules is not

difficult to solve. The mechanical problem of interpreting the spectral

data, Raman, infra-red, or ultra-violet, in such a way as to learn the

mechanical constitution of the molecule, however, is usually rather

difficult. Until this is solved for a particular molecule, the methods

of statistics cannot be applied to the gas.

It is usual to assume that the potential energy, which depends only

on the distances between the atoms, has a single minimum at one par-

ticular geometrical relative configuration of the individual atoms, and

that any displacement from this configuration results in an increase in

potential energy.

If two essentially different minima occur, as often happens with com-

plicated organic molecules, these two minima usually correspond to

different molecular species which are structural isomers. An illustra-

tion is encountered in butane, C4H10, which may exist as normal butane,

CH3CH2CH2CH3, or as isobutane, (CH3)3CH. These two configura-

tions of the atoms correspond to distinctly different chemical compounds,

and will be treated as such, so that configurations in the neighborhood

of one of the minima only would be considered in making calculations

for one of these compounds. If various minima exist, they may have

almost the same energy, as in normal and isobutane of the above ex-

ample, or they may have entirely different energies. If the two minima

correspond to two optical antipodes, which differ only in the sense that

the right and left hand differ, the energies of the two minima are iden-

tical.

In any event, the chemical problem of finding the properties of a

system composed of one structural isomer alone finds its statistical

analogy in determining the properties of a system which is inhibited to

179
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that part of the phase space, or to those quantum states, corresponding

to the neighborhood of one of the potential minima alone.

However, the total energy of the system may be so high that such

transitions do actually occur at an appreciable rate. One may then use

the method of Chapter 9 for an equilibrium mixture of gases capable

of undergoing a chemical reaction.

A third condition is sometimes met, namely, one in which the height

of the potential hill separating the minima is low compared with the

average energy of the molecules. Then the quantum states of the

molecules, and indeed those which are populated by the majority of

the molecules under the conditions considered, cannot be said to belong

to either one of the minima alone. The method of treating the equilib-

rium mixture of two isomers as a reaction equilibrium, in which the free t

energies of the isomers can be individually calculated, implies that all 1

those quantum states of the molecules which are thickly populated can >

be said to belong to one and one only of the various isomers. Whether

this is true or not will usually depend on the total energy, or tempera-

ture, of the system. However, it may well happen that even the lowest

energy level of the molecule, which has the half-quantum of vibrational

energy, may have a higher energy than that necessary to sunnount the

potential hill between two neighboring minima.

In such a case it is at once obvious that the two structural isomers

could never be separated chemically. Many examples are known in

which the separation of conceivable isomers has never succeeded, al-

though obviously the experiments have never been conducted at the

absolute zero of temperature. For instance, the organic chemist says

that there is free rotation around the carbon-carbon bond in the sub-

stituted ethanes, XYZC—CXYZ. There are, presumably, three minima

in such a compound, differing by a 120-degree mutual rotation of the

two —CXYZ groups about the axis of the C—C bond. The evidence

of organic chemistry indicates that even below room temperature there

are rapid transitions between these minima. It is then doubtful that

the quantum states of the molecule which are populated at room tem-

perature can all be said to belong definitely to one or the other of these

three minima. One must expect that the determination of the energies

of the quantum levels of such a molecule will be a problem of con-

siderable complexity.

Another distinction between different isomers and isomers which are

to be treated as identical must be clearly understood. If the four

tetrahedral hydrogens of the methane molecule, CH4, were different

and distinguishable, two different minima would be found, as evidenced

by the existence of two optical antipodes of CClBrlH, in which three
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of the hydrogens have been replaced by different atoms. These two

minima in CH4 , however, are indistinguishable because of the identity

of the hydrogen atoms.

In evaluating the classical phase space available to a molecule of

methane below a certain energy one must double the phase space avail-

able in the neighborhood of one of these minima. This must, however,

be divided by 4 1 = 24, the factorial of the number of identical atoms.

The total phase space available to the molecule with a certain energ>'^

must then be calculated by dividing that in the neighborhood of one

of the minima by 12 . This 12 is the symmetry number, 7 ,
of the

methane molecule, defined as the number of ways in which the molecule

can be oriented without changing its potential energy in the orientation

process, that is, by pure rotation, so as to obtain identical appearing

configurations.

Stated differently, the classical phase space available to a molecule

must be divided by the product of the factorials of all the numbers of

identical atoms. Each one of these ! exchanges of atoms would

lead to a different configuration of the molecule if all the atoms were

numbered. We must, therefore, count the phase space available to one

of these configurations only. If 7 of these configurations can be con-

verted into each other by rotation alone, then integration over all

orientation angles calculates the phase space of 7 configurations and

must be divided by 7 before use in the thermodynamic equations.

We shall, then, discuss first the methods of calculating the thermo-

d3mamic properties of a molecule in which it is assumed that all com-

plications are absent, and later discuss in more detail the corrections

due to symmetry in the molecule, and the cases in which the simplifying

assumptions which have been made are unjustified.

8b. The Number of Degrees of Freedom
The number of degrees of freedom of a polyatomic molecule has

already been discussed in section 6j. Most polyatomic molecules are

stable only at relatively low temperatures (below 1000®K.), and for-

tunately the greater number of those which are chemically important

have a single lowest electronic state with no excited level of energy so

low that it is appreciably excited at these temperatures.

The configuration and motion of the molecule can then be described

by the 3n Cartesian coordinates, and 3n conjugated momenta of the

n atoms composing the molecule. The molecule has 3n degrees of

freedom. One may transform to new coordinates, which must, how-
ever, be 3n in number.

Three of the new coordinates will naturally be chosen as the Cartesian
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coordinates of the center of mass of the molecule, defined by

Lto,!,-

(8.1) Z =-!=—, etc.,

i

where Xi is the x coordinate, and the mass, of the ith atom. The
wave function of the coordinates of the center of mass will be that of a

free particle with mass equal to the sum of the masses of the atoms.

These coordinates will then contribute additive terms to the thermo-

dynamic functions of the gas equal to those of a monatomic gas of this

mass. !

Of the 3n — 3 internal coordinates either two or three angles can be

chosen which determine the orientation of the rigid frame of the atoms\

with their mutual distances fixed in the position of minimum potential

energy. The potential energy does not depend on these angles. Two
angles will be sufficient if this minimum corresponds to a linear molecule

with all the atoms in a straight line. Three angles will be needed if the

potential minimum corresponds to a non-linear figure.

If the molecule is linear, as the diatomic molecule, one can assume as

a first approximation that the single moment of inertia is constant, and

the variables in the Hamiltonian will be separable. One obtains an

additive contribution from the rotational quantum number j to the

energy of each quantum state, and corresponding additive contributions

to the thermodynamic functions. These will be the same as the rota-

tional contributions to a gas of diatomic molecules with the same

value of the moment of inertia /. The momcmt of inertia of the poly-

atomic linear molecule is given by

(8 . 2 ) / = '£

where x, is the distance of the ith atom of mass w* from the center of

mass, so that = 0.

i

If the molecule is non-linear, one can assume, as a first approximation

at least, that the moments of inertia will be fixed as those corresponding

to the position of the minimum of potential energy. The Hamiltonian

will again be separable, and the three angles will make additive con-

tributions to the energies of the quantum levels of the molecule and to the

thermodynamic properties of the gas. These calculations will be carried

out in section 8d.

The potential energy of the molecule depends only on the remaining

coordinates of the molecule which are called the vibrational coordinates.
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8c. Vibrational Contributions

There remain == 3n — 6 or 3n — 5 degrees of freedom in non-linear

and linear molecules, respectively. That is, there are coordinates,

qi, and the potential energy can be expected to depend, at least to some

extent, on all of them. These coordinates can be so chosen that zero

value of all of them corresponds to the position of minimum potential,

which will be assigned the energy zero. These coordinates then rep-

resent displacements of the figure from the position of equilibrium.

If the total potential energy U of the molecule is dc'veloped as a power

series in the coordinates qi, the condition that U * 0 when all the qiS

are zero requires that the constant term in the development be absent.

The condition that this energy be a minimum, i.e., dU/dqi = 0 for all

q,’s when all qi^ are zero, requires that the power series begin with the

quadratic terms, that is, that all linear terms are zero. The cubic and

higher-order terms will be smaller than the quadratic at sufficiently

small displacements from the equilibrium position, at small values of the

^i's. As a first approximation they may be neglected, so that the poten-

tial can be written as a sum of terms, each of which is quadratic in the

but among which there will, in general, occur cross-product terms

of the type qiq^

It is a mathematical theorem that, whatever the values of the force

constants (the coefficients of the various terms) and whatevCT the values

of the reduced masses (one-half the inverse of the coefficients of the

terms p? in the kinetic energy), one can always transform to new

“ normal coordinates ” 3k such that, with their conjugated momenta px,

the Hamiltonian has the form

(8. 3) Huiqk.n) = ^ ^
In this equation the essential simplification which has been reached is

the elimination of the second-order cross-product terms of the type

in the potential energy (without the introduction of cross products piVj

in the kinetic energy). The ayjs are the generalized force constants, and

the n\S the generalized reduced masses. (By a linear change of scale

the coordinates are often so determined that the reduced masses are

all unity.)

The third-order terms in the potential, if included in the above equa-

tion, would, unfortunately, contain cross products. Their neglect is

justified only if they are negligible compared with the quadratic terms

for such displacements gx that the quadratic terms (ax/2)gx are of the

order of magnitude of kT.

If the third-order terms are neglected, the Hamiltonian is separable,
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that is, it consists of a sum of terms each depending on one only of the

fu coordinates with its conjugated momentum. The wave function is

a product, and the energies of the quantum states a sum of terms, each

depending on the one quantum number vx associated with the normal

coordinate gx. The additive part of the Hamiltonian for each coor-

dinate with its conjugated momentum is exactly the Hamiltonian of the

harmonic oscillator with the force constant ax and the mass mx* The
solution in classical, or in quantum mechanics consists then of inde-

pendent harmonic vibrations of the system along all of the normal

coordinates, each with* its own frequency v\ ~ (l/2ir)(ax/Aix)'^*' The
contribution of each coordinate to the energy of a quantum state of the

molecule will be, as for the vibration of a diatomic molecule, cx

(vx + \

The partition function Q is then a product, and In Q a sum, of '

terms, each of the same type as the and In calculated for the
'

diatomic molecule in section 7c, in which the frequency v\ must be used

in the term Q\ or In Qx.

The analysis of the motion of the molecule as harmonic oscillation

along the normal coordinates is essentially a formal one. It has no more,

but also no less, physical significance than the arbitrary analysis of a

wave as a Fourier sum or integral of sine and cosine waves. In the

case of white light the spectrograph makes a physical analysis of the

wave which is exactly that of the formal mathematical analysis into a

Fourier integral. So also certain experiments analyze the motion of a

large-scale model of a molecule, which obeys the classical laws, into

harmonic vibration along the normal coordinates.

If such a model is distorted from its equilibrium shape, and then

released, the rather complicated motion which ensues may be analyzed

in the formal manner described as harmonic vibration along the normal

coordinates. If the original displacement were such that only one, qy,

of the normal coordinates q\ were different from zero, and if the cubic

interaction terms were really zero, the subsequent motion would actually

be true harmonic vibration along this coordinate, qy, with the fre-

quency vy, all the other coordinates remaining zero during the motion.

If such a model is shaken with a variable frequency, say by an electric

motor, the amplitude of the motion of the molecule will be small at most

frequencies. If, however, the frequency of the shaking becomes that of

one of the normal coordinates, the amplitude will increase markedly

and the molecule will vibrate along that coordinate.*

In Fig. 8.1, the directions of the motion given by displacements along

• C. F. Kettering, L. W. Shutts, and D. H. Andrews, Phys, Rev., 36, 531 (1930);

D. E. Teets and D. H. Andrews, J. Chem. Phya., 3, 175 (1935).
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the normal coordinates are shown for some of the simpler types of mole-

cules. The exact angles of the displacements will depend on the

numerical values of the forces and of the massesi but certain of the

characteristics of the motion can be deduced from considerations of the

symmetry of the molecule alone. These considerations are of prime

Th« types of motion associated with the normal vibrational coordinates of
some molecules.

Diatomic

Triatomic Tetra-atomic

importance in the case of such a relatively complicated, but extremely

symmetrical, molecule as benzene, CeHe-t The most useful tool for

these considerations is the mathematical theory of groups.

In general if the molecule has some degree of symmetry, not all the

fu frequencies, will have different numerical values, but there may be

several of the normal coordinates for which the frequencies will be

necessarily identical. In this case it is also true that the choice of the

normal coordinates will not be unique, since any linear combination of

two coordinates with the same frequency will also be a normal coor-

dinate of the system. However, the number of normal coordinates,

and therefore the number of terms In Qx which enter into the thermo-

dynamic functions, is uniquely fixed.

* The order of frequencies depends on the masses and binding. That of the upper

two is, for instance, reversed in CQ2 «

t E. B. Wilson, Jr., Phya. Rev., 46, 706 (1934).

Degenerate

Degenerate
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In such a ease the coordinates of identical frequencies are said to be

degenerate, and two or more In Q\ terms enter into the thermodynamic

expressions with the same frequencies.

The numerical values of the frequencies are always obtained from an

analysis of the spectrum of the molecule. They may be observed in the

infra-red, the Raman, or the visible or ultra-violet spectrum of the gas.

If the molecule is completely unsymmetrical all fu frequencies will be

essentially different, although, of course, one cannot completely rule

out the possibility that by pure chance two of them may be very close

to each other in value. In this case of a completely unsymmetrical

molecule all fu frequencies will be, in principle at least, observable in

any one of the above spectra.

If all fu different frequencies are actually observed, no mechanical

analysis of the motion of the molecule is necessary. The contribution

of the fu degrees of freedom to the thermodynamic properties of the gas

will be given by fu ternis of the same type as the contribution due to

vibration in a diatomic molecule, each depending on one frequency alone.

In a symmetrical molecule, how’ever, certain difficulties are encoun-

tered. The frequencies due to certain of the normal coordinates will be

absent in one, or even conceivably in all three, of the above types of

spectra. For instance, the first type of motion for the symmetrical

linear triatomic molecule CO2 showm in Fig. 8. 1 is one in which the

oxygens always move in opposite directions, and the carbon remains

fixed. For this motion there is no dipole displacement of the electric

charge, and the frequency associated with this normal coordinate will

be absent, or at least very weak, in the infra-red spectrum of the gas.

Even if all the different frequencies are actually observed their total

number will often be less than fu owing to the essential degeneracies

present in a molecule of the given symmetry. One must then ascertain

which of the observed frequencies are to be used twice or more often in

the thermodynamic terms. In order to do this an analysis of the

mechanical motions of the molecule is necessaiy. For some of the

simpler molecules this may be done almost intuitively; for others it is

extremely complicated.

For CO2 a few qualitative considerations are sufficient to enable one

to place the observed frequencies uniquely. The four modes of motion

of the four normal coordinai es can be seen intuitively to be those sketched

in Fig. 8. 1. The first motion shown will not occur in the infra-red but

will be present in the Raman spectrum of the molecule. This type of

motion, in which the oxygen atoms move oppositely, will have a fre-

quency between the other two (about 7.5/x). The second type of

motion in which the oxygens move together should be observed in the
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infra-red, since in this type of motion the center of gravity of the neg-

ative charge, associated with the oxygen atoms, moves with respect

to the center of gravity of the positive charge. This frequency will be
missing in the Raman spectrum. This type of motion has the highest

frequency (about 4.7/*). The third type of motion is degenerate, and
it is this frequency which must be used twic^ in the thermodynamic
terms. This type of motion is a bending of the molecule, and will be
infra-red active, but Raman inactive. However, the forces resisting

bending in a molecule are much weaker than those resisting changes

of distance between the atoms, so that this frequency wnuld be expected

to be decidedly lower in value than either of the others (about 15/i).

One expects, then, for CO2 ,
to find two strong infra-red frequencies

reported, one of which should be very considerably lower than the other.

In the Raman spectrum one expects only one strong line, the frequency

of which should lie between those of the two infra-red-active vibra^

tions. The lower of the two infra-red-active frequencies is the de-

generate one.

The actual situation in CO2 is complicated by the occurrence of what
is called an accidental degeneracy. The frequency of the bending
motion is almost exactly half of that of the frequency of the Raman
active vibration, so that the two quantum levels, one in which there are

two quanta in the bending degrees of freedom and the one in which
there is one quantum in the stretching degree of freedom, have the same
energy. These two levels combine, that is, they form two new levels,

one of lower, and one of higher energy, each of which has some of the

mechanical properties of both of the original levels.* Consequently,

two Raman lines are observed, instead of the single line which we had
been led to expect. The regular equal spacing of the vibrational levels

in the energy scale is also distorted, and so for C()2 one cannot expect
that the thermodynamic properties would be correctly calculated by
the simple equations which have been derived here.

For the CO2 molecules, as for most molecules consisting of only three
or four atoms, simple qualitative considerations are sufficient to enable
one to predict the type of spectral frequencies which will be found and
to interpret any anomalies which occur. For more complicated mole-
cules, such as benzene, a careful mathematical analysis of the mechan-
ical problem is necessary before the observed frequencies can be utilized

for statistical calculations.

The usual method of attack involves first a group theoretical analysis
of the normal coordinates, making use of the symmetry properties of the
molecule. The number of different frequencies is determined in this

* Enrico Fermi, Z. Phy^ik, 71, 250 (1931).
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manner, the degeneracy of each type of motion is found, and for each

frequency it is determined if it will be infra-red or Raman active. By
qualitative considerations, an attempt is made to order the different

modes of motion in order of the numerical values of their frequencies, and
thus to associate the observed infra-red and Raman lines with the

different normal coordinates.

If, as in benzene, some of the frequencies are completely absent in

both the Raman and the infra-red spectra, and are also not known from

the electronic transition spectrum, a further numerical analysis is

necessary. The force constants for the different normal coordinates

may be expressed as functions of the forces between the individual

atoms. By neglecting the forces between distant atoms, and making
'

ample use of the symmetry of the molecule, the number of different \

force functions between the atoms may be reduced to equal or less than

the number of observed frequencies. One has then, in principle, enough

observed data to determine all the unknown forces, and so to calculate

numerical values for the unobserved frequencies. Needless to say, the

operations are rather difficult.*

In order to deduce that the contribution of the fu oscillatory coor-

dinates to the thermodynamic function, X, of the gas was to add/u terms

of the type X^, calculated in section 7c, it was necessary to assume that

the cubic terms properly present in equation (3) were negligible. It is

obvious that for sufficiently small displacements g\ this is legitimate.

However, the actual displacements at any temperature are approximately

given by the relation that the quadratic term has the value kT, so that

the temperature range of validity can be estimated by these conditions.

It is not always true that the approximation is justified even at room

temperature.

Two rather different types of deviations may occur.

One of these is that the cubic and higher-order terms for one of the

normal coordinates alone must be considered, but the cross-product

terms in which the coordinate is multiplied by others may be neglected.

In this type of deviation the Hamiltonian is still separable, but the

energy of a quantum level due to the coordinate gr is not now given by
the simple equation (Vr + j)hPrf even for energies of about kT or less,

but by some more complicated expression. The additive contribution

of this coordinate to In Q may still be calculated as one term, inde-

pendently of the others, but will not be given by the form of In due

to simple harmonic vibration.

The problem is again essentially mechanical, and not statistical. If

the actual quantum levels due to this coordinate can be found in the

• R. C. Lord, Jr., J. Phys, Chem., 41, 149 (1937).
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spectra then numerical summation of will yield the desired value

of Qf If* insteady the actual form of the potential were known, or

could be guessed with reasonable certainty, it would always be possible

to solve for the quantum levels, if necessary, by numerical integration

of the one-dimensional wave equation, and to find Qr by direct sum-
mation.

A problem of this sort which has not been completely solved arises

in ethane, H3C— GH3. One of the normal coordinates of this molecule

corresponds to equal and opposite rotation of the two CH3 groups about

the axis of the C— (? bond. Now two extreme cases are conceivable, and
it is probable that the true state of affairs lies between them. One might
assume that the three symmetrical positions of minimum potential

energy for this coordinate are separated by such low potential hills that

it would be possible to treat the potential energy as though it were

independent of the value of this coordinate. The quantum-mechanical

solution is then easy,* and leads to the energy levels

(8. 4)
l6ir"C’

where r is an integral quantum number, and C is the moment of inertia

of one of the CH3 groups about the C—C axis of the molecule.

The other extreme would be to assume that the minima along this

coordinate are so steep that one can use the quadratic term in the poten-

tial expression alone, and assume that the rotational vibrational ampli-

tude is never great enough to leave the region near one of the minima

where this is allowable. This is, of course, justifiable only if the poten-

tial hills separating the minima are much higher than the value of kT.

If this is assumed €r = (r + ^)hvr-

One might assume that a decent approximation of the potential for

all values of the coordinate qr would be obtained by the equation

(8. 5) u{qr) = ^A{\ + cosSgr).

At qr equal to zero, 2ir/3, and 4ir/3, the cosine has the value unity and

the potential has the maximum value of A, the top of the hill between

the minima. At qr = ir/3, ir, and 57r/3, the potential is zero; these

are the positions of the three minima.

The quantum levels can be calculated for this type of potential, and

their values are obtained as a function of the unknown A,\ Motion

* J. E. Mayer, S. Bninauer, and M. Goeppert Mayer, J. Am. Chem. Soc.^ 56, 37

(1933).

1 E. Teller and K. Weigert, Nachr. Gee. Wise. GdUingen, 218 (1933).
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along this coordinate is neither infrari^ nor Raman active, so the

cdcuhted levels cannot be compared with spectroscopic frequencies in

Older to detennine k. The only available method to determine this

parameter is to compare the thermodynamic properties of the gas with

the calculated values, assuming that all the other frequencies are cor-

rectly determined. This method of comparison is open to several

uncertainties.

The second type of deviation from the assumption of/„ simple har-

monic oseillational degrees of freedom is one in which the cross-product

cubic terms in the potential arc appreciable at energies eorresponding to

the temperature for which the calculations are made. Under these

conditions the situation becomes so complicated mechanically that it is

doubtful that such a problem will be successfully solved in the near \

future.

We have already encountered, in the discussion of the CO2 molecule,

an example of the accidental degeneracy of two levels causing difficulty

in the interpretation of the spectra. The magnitude of the energy

splitting which arises when two levels of the molecule approach each

other in energy, due to such an accidental numerical relationship in the

values of the different frequencies, is dependent on the magnitude of

the cubic and higher-order terms containing cross products between

the g\s. If the coefficients of these terms are identically zero the split-

ting will be zero.

Another difficulty which sometimes reduces the accuracy of the

values of In Q obtained by the method outlined here is the stretching of

the molecule in the higher vibrational and rotational levels. This

results in a dependence of the moment of inertia on the angular momen-
tum and on the quantum numl^ers of vibration. This effect was
specifically calculated for diatomic gases in section 7d. It is impossible

to make as general a calculation for all types of polyatomic molecules,

and since the rotational spectrum is not usually analyzed, the constants

for such an empirical formula as (7. 24) are unknown. For any par-

ticular molecule it is always possible to ascertain the extent of the

stretching if all the frequencies are known,* but this is usually a

moderately involved mechanical calculation.

It is to be expected that for such rigid molecules as CH4, or CeHe, this

effect of lack of constancy of the moments of inertia would not be very

important. For propane, CH3CH2CH3, in which the carbons are not

in a straight line, the effect may be very appreciable at room tempera-

ture.

It is seen that one is usually restricted to making much less accurate

* £. B. Wilson, Jr., J. Chem. PhyB.. 4, 526 (1036).
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calculations for polyatomic than for diatomic molecules. Nevertheless,

the methods outlined in this c fcapter are capable of giving rather good
results for many molecules.

8d. Rotation

The rotational contributio!'. to the partition function of a linear poly-

atomic molecule is the samt) as that for a diatomic molecule with the

same moment of inertia. The moment of inertia of the polyatomic

molecule must be calculated by equation (2).

The rotational spectra evf^n of most linear polyatomic molecules have

not been analyzed. The moment of inertia is consetiuently not known
from the spectral data, and must be calculated from equation (2) using

distances obtained from electron diffraction, X-ray, or semi-empirical

information. The distance bet^veen definite atomic* pairs with a given

type of chemical binding appears to be remarkably constant and inde-

pendent of the particular molecule in which the pair occurs.

For non-linear polyatomic molecules we must calculate the partition

function due to the three degrees of freedom of rotation. The general

quantum-mechanical solution for the rotational coordinates of a rigid

body cannot be made, but, since the moments of inertia are almost

invariably large, the quantum levt'ls are closely spaced compared with

the value of kT at the boiling point of the gas, and tlie classical approxi-

mation may be safely used.

The moment of inertia, -A, of a body composed of n mass points of

masses mi, •
•

,
m,, - •

•
, via, about any axis in space is given by the

equation

(8. 6) Z wi.r? = A,
t = l

where r*- is the perpendicular distance of the mass point from the axis.

If the axis passes through the center of mass of the molecule it follows

that

(8 . 7 )
= 9

if r i is considered a vector.

If the magnitudes of the moments of inertia of any rigid body about

the various axes passing through one point in space arc plotted along the

directions of the axes, they fall on the surface of an ellipsoid with its

center at the origin of the plot. This means that three perpendicular

axes can be found such that the moment of inertia about one of them

is a maximum (is larger or equal to the moment about any other axis),
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the moment about the second is a minimum, whereas the moment
about the third axis is in a saddle point, so that it is smaller than Ihe

moment of any other axis in the plane common to it and the first axis,

and greater than that of any other axis in the plane common to it and

the second axis.

These three moments of inertia, about the center of mass of a mole-

cule, are called its three principal moments of inertia, A, £, C, and the

three axes are referred to as the principal axes of the molecule.

If the three principal moments are all equal, as in methane, the mole-

cule is called a spherical top, and, of course, the moments about all axes

through the center of mass then have the same value. If two moments
are equal, but the third has a different value, the molecule is said to be

a symmetrical top, and then all axes in the plane of the two axes with

equal moments have the same moments of inertia. Benzene, ethane,

and chloroform molecules are symmetrical tops.

If the position of the tth atom in Cartesian coordinates is X{, y^, z,*, then

£ mat * £ mtyt = £ man = 0
,

«-l i-l »-l

if the center of mass is taken as the origin. The moments of inertia about

the X, y, and z axes are, respectively,

Imm * £ mi(zj + yj), lyy ^ mi{z\i + X*), = £ mi{x\ + y!),
i-l t>l

and pmducts of inertia /„«, /», Izy, may be defined as

t»n

lyt = £ WfyiZi, etc.

The three equations

cl{Jxx vi) y^xt = 0

— Otizy P(Jyy T-fy* ” 9

-alxM “ PJyx + - 17) = 0

with a* + + T* “ 1

can be solved for three different values of 17 which are the three principal moments

of inertia. The corresponding values of a,
j
9, 7 are the direction cosines of the

three principal axes. It is seen that if all the products of inertia are zero the

X, y, and z axes are the principal axes and their moments are the principal

moments of inertia of the molecule.

The three Eulerian angles, 8, and ^ are used to describe the orien-

tation of a ripd body in space.
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If X, y, and z are taken as the three Cartesian coordinates fixed in space, and

Y7 , f as the three principal (perpendicular) axes of the body, then 8 is the angle

^tween the body axis f and the space axis z. The line in the xy plane perpen-

dicular to the plane common to f and z is called the nodal line. The angle

between this nodal line and the x axis is Thus 6 and ^ completely determine

the direction of the f axis in space. The angle between the nodal line and the

f axis in the body is rp. This, then, completely defines the orientation of the

whole body with fixed center of gravity.

The angle $ may vary between 0 and ir; the two angles <p and p take

all values from 0 to 2ir.

The Hamiltonian of the rigid body with fixed center of gravity is just

the kinetic energy, written as a function of these angles and their con-

jugated momenta, namely,

(8 . 8 ) H =
sin^ ^

2A V9
- COS

sin 0 sin ^
(p* - cos p^)

+
cos^ ^ f sin 4/

2B \^* sin 9 cos ^
(p^-cosflp*)

3

This can be transformed into an expression which will be found more

convenient for future operations,

^sin® iff
,
cos®

kT~

/I 1\ sin if cos iff , „ ^1®
• ^ - 7) zzTT—rrrrr (p* - c®®Pe + \B

sin 0
(

sin® if cos® if\

+
1

247* AB sin® 9 /sin® if\^^* '*'2fc7’C^*

(

sin® if cos® A
A B /A ' B

The partition function due to the rotation of this body is

(8. 10 )

/
+

0O /»+ 00 /»+QO /MT /‘2«- 1

/ / iff 73
C""‘’’*^^**^dp,dp^dp*d9<4df.

•00 •'—00 •'—00 •'0 •'0 •'0 ^

The substitution of (9) in (10) appears to lead to a rather formidable

integral, but direct integration in the order p$, actually offers no

difficulties. It is necessary to remember that

r
+oo /i+oo

e-»«*+W*dx= f e-“‘dr
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Integration over leads to the factor

{2irkTy^^
sin^^

A * B f".
Subsequent integration over yields

{2rkTABfl^ sin +
COS^ ^

1/2

as a factor, which cancels part of that obtained in the first integration.

Integration over p^ yields the factor

{2irkTC)^^^.

Integration of sin 6 dO from 0 to ir gives 2, and the other angles give each a

factor 2ir, so that

(8. 11) Qroi. * IT
1/2 fSir^Ak

V

If, in conformity with the notation adopted in section 7b for the dia-

tomic molecule, we define

(8. 12)

lb

“
Sir^AkT’ Sir^Bkf

etc.,

then

(8. 13) In Qk = ^ In—
2

Using equations (6. 25') to (6. 29') for the contribution of these three

degrees of rotational freedom to the thermodynamic properties of the

gas, one obtains

(8. 14) F« = -BTln Q« =
A v

(8.15) S,.Bi(n„«.)-80 +il„^),

(8. 16) E, = I
RT.

(8. 17)
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8e. The Symmetry Number
Just as in symmetrical diatomic molecules consisting of two identical

atoms, for which only half of the rotational levels occur, symmetrical
polyatomic molecules do not have as many allowed rotational levels as

unsymmetrical ones.

The symmetry number 7 of a molecule is defined as the number of

different values of the rotational coordinates which all correspond to one
orientation of the molecule, remembering that the identical atoms are

indistinguishable. Thus the symmetry number of a diatomic molecule
of two identical atoms is two. The molecule CO2 ,

which is linear,

() = C = 0, has also a symmetry number two. The symmetry number
of tetrahedral mc'thane is twelve, since any of the four corners of a tetra-

hedron may be placed upright without altering its apparent orientation,

and with each of the four corners up the three positions differing by a
rotation of 2ir/3 about the vertical axis look identical. The symmetry
number of benzene, C^eHe, is also twelve, if, as is presumed, the molecule

is a njgular hexagon with all the atoms lying in one plane. With either

side of the plane facing upwards there are six positions differing by
rotation of integrals of v/S about the vertical axis, all of which are

identical if the atoms are unnumbered.

If the molecule contains ni identical atoms of kind 1,
• •

•
, n,* of kind i,

then ! permutations of these atoms are possible. If the atoms were

all distinguishable in principle these Ilni - permutations would all lead

to different configurations of the molecule, but only (Ilrii \)/y of these

would be different molecules, since each of the configurations could be

transformed into 7 other ones by a rotation of the molecule alone. The
number of distinct minima, A, in the potential energy diagram of such a

molecule, all having identical energies, will be

A = - H/i,-
!,

in which 7 is the symmetry number.

For example, in methane there are four identical hydrogen atoms, or

twenty-four different permutations, of which tw'elve can be obtained by
rotation. The tw'o essentially different configurations show up as the

two optical isomers if three of the hydrogens are replaced by different

groups.

The classical phase space of such a molecule must be divided by
Ilrt,

! (and by h^) in order to obtain agreement with the number of

quantum states in a certain energy interval. However, if, as is usually

done, the phase space in the neighborhood of one of the A minima alone
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is calculated, then this must be multiplied by A before division by
Ilnj !, which, from the equation for A, can be seen to result in a division

by the symmetry number 7 . As in the case of symmetrical diatomic

molecules the classical phase space of the molecule (in the neighborhood

of one potential minimum) must be divided by the symmetry number,

7 , in order to calculate the correct thermodynamic properties.

The quantum-mechanical problem has the corresponding solution.

Out of a range containing a large number of rotational levels found in

the mathematical solution, only the fraction 1 /7 will have the symmetry
character with respect to permutations of the identical atoms which is

necessary in order to satisfy the conditions imposed by nature on the

complete wave function of the molecule. The actual form of the

symmetry which will be necessary in the rotational eigenfunctions,

whether symmetrical, antisymmetrical, or even some more complicated

character, and the actual rotational states which are allowed, will

depend on many factors such as the mutual orientation of the nuclear

spins, the mass number of the nuclei, and the vibrational and electronic

level. However, at high temperatures (and for a polyatomic molecule

all reasonable temperatures may be regarded as high) the values of the

thermodynamic properties depend only on the average number of states

allowed. The effect of symmetry in the molecule is always to add
—22 In 7 per mole to the entropy, and RT In 7 per mole to the free energy.

The nuclear spin entropy is, as always at high temperatures, just

R In (2Sn + 1 ) per gram atom of element with spin Sn-

With certain molecules one appears to get into some difficulties with

the symmetry number, since two differing viewpoints are possible.

Closer inspection shows the difficulties to be easily resolvable, since

both viewpoints, if developed systematically, lead to the same result.

It may, however, be instructive to analyze one such molecule.

It has already been stated in section 8a that it is questionable whether,

for the molecule ethane, H3C— CH3, one should regard the opposite

mutual rotation of the CH3 groups about the axis of the C—C bond as

completely inhibited or as partially free. If rotation about this bond is

completely prevented, so that one calculates the distribution of the mole-

cules in the phase space, or quantum states, in the neighborhood of one

of the three symmetrical potential minima only, the symmetry number
arrived at is six. This is seen by considering that rotation of the mole-

cule as a whole about the C—C axis leads to three corresponding posi-

tions, and rotation by ir about an axis normal to the C —C bond leads to

another set of three equivalent positions.

If independent rotation of the methyl groups around the C—C axis is

assumed the symmetry number is threefold greater, or 7 = 18.
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There are six identical hydrogen atoms and two carbon atoms in the

molecule, so that Iln.- ! = 6 ! 2 ! = 1440. The number of different
t

isomers, A (that is, different if the atoms were distinguishable), assumed in

hindered oscillation is 1440/0 = 240, and in free rotation, one-third of

this number, or 80. For free rotation one can count the 80 isomers as

due to the (0 !/3 ! 3 !) = 20 different ways that one can associate three

out of six numbered hydrogen atoms with each of the two numbered
carbon atoms, multiplied by 4 because around each carbon the order of

the hydrogens in a cycle may take two different values. With hindered

mutual oscillation about the C—C bond there are three times as many
isomers.

That is, for ethane, one may either choose 7 = 18, A = 80, or 7 = 6,

A = 240, depending on whether one counts, respectively, the total phase

Kio. 8. 2. Potential energy and quantum state diagram for the internal rotational

degree of freedom in ethane.

space with a given energy in all three of the minima positions, or one-

third of this space in the neighborhood of only one of these positions.

I'he corrected phase space, after division by the symmetry number, is

the same in either case.

In Fig. 8. 2 the potential energy is plotted as a function of gr, the

angle between the projections of two specifically chosen hydrogen atoms,

one on each carbon atom, on a plane normal to the C—C axis. The
equation used for the potential is that already given in equation (5).

With energy ranges below the hills separating the three minima it is

clear that in counting the classical phase volume due to the coordinate

it is immaterial whether one takes the coordinate range at one of the

minima and divides by the S3mimetry number 6, or whether one adds all
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three equal coordinate ranges and divides by 18. At energies higher

than that of the hills it is obviously more natural to include the whole

coordinate range and divide by the symmetry number 18 corresponding

to free rotation.

The quantum-mechanical solution is somewhat less trivial. The
levels which are far below the energy of the tops of the hills show each

three different states, and in the zeroth approximation each of these

states corresponds to the molecule existing in one of the three different

minima. However, a more exact solution of the w'ave equation is

obtained by using certain linear combinations of the three states that

correspond to the different minima. The three linear combinations will

have slightly differing energies, the amount of the splitting depending on
the height of the hills between the minima and the moment of inertia of

the CH3 groups. Even if the energy splitting were negligible, it is

statistically important that there are three states to each level; the

levels are triply degenerate.

The complete wave equation for the molecule, which must be anti-

symmetric with respect to permutations of the identical hydrogen

nuclei and symmetric with respect to exchange of the two carbon nuclei,

will be a product of a function of this coordinate qr wdth the functions

of the other coordinates, the electronic functions, and the nuclear spin

function. In order to make the total function antisymmetric it will be

necessary to use particular linear combinations of the functions of the

coordinate qr which correspond to the minima, namely, those which

have what is called a definite symmetry character with respect to per-

mutations. Each one of the three linear combinations of one level, if

multiplied by a definite vibrational, spin, and electronic function, can

only be multiplied by 1/18 of the v^irious rotational functions to give

a completely antisymmetric total wave function.

If the moment of inertia is large, and the hills between the minima

high, so that the lower levels of this coordinate are negligibly split in

energy, it is then immaterial whether one regards each level as being

threefold degenerate, and each state of the level combining with one-

eighteenth of all the rotational states, or whether one forgets the degen-

eracy and says that each level combines with one-sixth of all the rota-

tional states. The higher levels of this coordinate will certainly be

considerably split in energy, and those whose energies lie close to the

top of the hills will be so strongly split that the classification into levels

corresponding to the vibrational states in the localized minima is no

longer useful. For energies very much higher than the tops of the hills

the equation for the energy of the different states will go over asymptoti-

cally into those given by equation (4) for free rotation.
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A similar situation is encountered in ammonia, NH3. If the molecule

were planar with the hydrogen atoms symmetrically placed, thesymmetry

number would be sbc, and only one structural isomer would exist. If

the molecule is pyramidal, y -Z, two structural isomers could be

formed with distinguishable hydrogen atoms. Keeping the positions of

the hydrogen atoms fixed, these isomers differ in one having the nitrogen

atom above the other having it below, the plane of the hydrogens.

These configurations cannot be transformed into each other by rotation

alone. For both structures one of the normal coordinates corresponds

to displacement of the nitrogen nonnal to the plane of the hydrogen

atoms, and uniform displacement of the three hydrogen atoms in the

opposite direction.

For the planar structure the single minimum along this coordinate is

at the point where the nitrogen is in the plane of the three hydrogen

atoms. If the molecule has a pyramidal structure it means that there

arc two minima, which will be symmetrically placed with respect to this

position in which the atoms are all in one plane. The maximum in the

plot of the potential along this coordinate will then be at the place where

the atoms are in one plane. If this maximum is sufficiently high the

vibrational levels of this coordinate may eit her be treated as doubly

degenerate, each of the two staten of the level being allowed with one-

sixth of the rotational states, or one could forget al)Out the degeneracy

and say that each of the Imls combines with one-third of the rotational

states.

If, as is actually the case, the maximum separating the two minima

is very low, the levels will be split in energy due to the interaction of the

two isomeric positions, and one will observe, in the spectra, the dif-

ferent single slates with different energies, each combining with one-

sixth of the rotational states. The energy spacing of the vibrational

states of this coordinate is not given by the simple yhv, the lower states

occurring in pairs, noticeably closer in energy than the average spacing.

The contribution of this coordinate to In Q cannot be calculated by using

the simple In Qy formula, but must be calculated by direct summation

of the observed energies.



CHAPTER 9

MIXTURES OF GASES AND CHEMICAL EQUILIBRIUM

(a) Introduction, (b) Gaseous Mixtures, (c) Chemical Equilibrium.

(d) The Entropy of Isotope Mixing, (e) An Interpretation of the Equilib-

rium Equation, (f) Estimation of Equilibrium Constants.

9a. Introduction

The laws of thermodynamics have been shown in the preceding chap-

'

ters to be a consequence of the laws of mechanics. In considering a

gas composed of a mixture of two or more kinds of molecules the usual

methods of thermodynamics may be employed as a logical part of the

theoretical approach which has been developed here. In such a use of

the thermodynamic method it would be necessary only to use the fact

that, by definition, the thermodynamic properties of one perfect gas

are uninfluenced by the inclusion of another perfect gas in the same

vessel.

Similarly, the thermodynamic condition that the free energy be a

maximum at equilibrium leads to the well-known relationship between

the equilibrium constant and the difference in free energy of the products

and reactants of a chemical reaction.

Any statistical derivations of the equivalent statistical relationships

are, of course, essentially only repetitions of the thermodynamic proofs

in other language. Nevertheless we shall, in this chapter, show how the

methods of Chapters 5 and 6, if applied to a system containing more

than one kind of molecule, lead to the equations for a mixture of gases.

We shall also derive the equations for the conditions of chemical equi-

librium by a variation of the same methods.

The equations for chemical equilibrium will be applied to a mixture of

isotopes to show that the equilibrium in all chemical reactions, at high

temperatures, with the neglect of the effect of the differences in masses,*

is not altered by the presence of the isotopic differences between some

of the atoms of an element. The absolute entropy of mixing of the

isotopes is the same, per gram atom of element, whatever the state of

molecular aggregation.

A very ample interpretation of the conditions for chemical equilib-

rium will be demonstrated, and some short methods of estimating the

equilibrium constant will be discussed.

* See Problem 0. 1.

200
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9b. Gaseous Mixtures

A system consisting of Ni independent molecules of type 1, N2
independent molecules of type 2, • of type f ,

with the total

volume V and total energy jB, will be considered.

The different types of molecules w’ill have distinctly different quantum
states. A quantum state of the whole system is determined by the
number of molecules of the type f in each of the quantum cells of this

type of molecule, for all values of the running index f. Analogously to
the method employed in Chapters 5 and 6, the phase space is divided
into regions indicated by two indices j and f. The region includes

a large number, Cjf, of cells available to the molecules of type f, each
having an energy lying between and The part jf of the
system consists of the molecules which are in the region jf. The
combinatory part of the problem is the same as that of Chapter 5, and
the entropy, Sjf, of the part system jf will be given by equation (6. 2).

The value of dSj^/dNj^ will be given by equation (6. 3), which is

in which the unity will be omitted under the assumption that we always
deal with conditions for which is very large.

The total entropy of the system will be the sum of the entropies of

all conceivable regions, the sum of over all values of j and of f. The
value of Njf/Cjf may be found by either the method of Chapter 5 or

t hat of Chapter 6. That of Chapter 5 was to make the total entropy

a maximum, subject to the conditions that the total energy and the

total number of particles remain constant. The only difference between
the one-component system treated previously and the present system is

that for this system the total number of particles of each kind must be
kept constant independently.

The limiting conditions are

(9. 2) = Nf (for all f's),

j

(9. 3) =

After multiplication of each of the equations (2) by a different constant

Aittf and the one equation (3) by kp, these are subtracted from the

equation for the entropy and differentiated with respect to

- kZctfZNii - kfiZ 0.

oNffti t t } i t J
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The condition that the differential coefficient be zero for each value of

is the condition for the maximum of 5.

The equations obtained are

(9. 5)

for each value of f . The will be different for each kind of molecule

f . Each a is to be determined by the use of equation (5) in equation (2)

;

af is seen to depend on only, and in the same way as in a pure gas

of the same volume. The presence of the other molecules does not

affect the value of a. The parameter /3 is a constant of the system.

The subsequent manipulation is exactly the same as that of Chapter

5. That the value of /3 is the same for each of the molecular species

insures a single temperature for the system. The entropy and energy

of the mixture are sums of the values for each species of molecule, and

for each species they have the same values as functions of volume and

temperature that they would have if the other molecular types were

absent from the vessel.

Since P = T(dS/dV)Ef from equation (4. 35), we may define the

partial pressure as tin*, pressure which would be exerted by the mole-

cules f in the same concentration N^/V at the same temperature in a

pure gas, and the total pressure P is the sum of the partial pressures

of the different molecular species,

kT
(9. 6) P = L/^f=irLAr,.

r y c

The total pressure is just RTjV times the total number of moles of gas

present.

The quantities A, i/, and ¥ are also additive sums of the values of

these quantities for the pure gases at the same concentrations or the

same partial pressures.

That these relationships must be obtained is obvious from the original

description of the system. The molecules were all presumed to be inde-

pendent of each other, except in so far as it was tacitly assumed that

they were in equilibrium with respect to the exchange of energy. This
interdependence assured uniformity of temperature throughout the
system. Their independence required that the properties of that

part of the system composed of one molecular species alone would be
the same as if it occupied the whole volume of the system by itself.

The method of Chapter 6 could as well have been used as that of

Chapter 6. The uniformity of temperature in the qrstem would first

be deduced from the condition that all energy exchanges were assumed
to be allowed. For each species of molecule the value of % must be
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constant in all parts of the system, but the values of the for the dif-

ferent kinds of molecules are entirely independent.

The equations for one particularly simple mixture of gases are worth

recording. If the different kinds of molecules are mechanically similar

in all their properties, and equal, or at least very nearly equal, in mass,

then the values of the partition functions will be identical for all

values of f. In this case, for one mole of gas, (2-^V = ^o)> the equa-
t

tion for the total free energy of the system will be

(9. 7) F = - In Q)
s f

from ecjuation (6. 9) for the chemical potential m*

If the mole fraction = N^/Nq is introduced, the equation, per mole,

becomes

(9. 8) F = RT (In No - In Q + In x^),

f

This differs from the free energy of the gas composed of one component

only by the additive In which is always negative since the

mole fractions, Xf, must, by definition, al’ways be smaller than unity.

The entropy of the mixture of gases is greater by the additive

— In Xf, which is positive.

The energy, E, and also H, C|r, and Cp, will be the same as for the

gas composed of only one component.

9c. Chemical Equilibrium

Methods similar to those of the last section may be employed to cal-

culate the conditions for chemical equilibrium in a system consisting of

a mixture of perfect gases. A gas composed of molecules of various

kinds will be investigated, but it will not be supposed that the number

of each kind of molecule is fixed. A chemical reaction will be con-

sidered to take place in the mixture, so that the numbers of molecules

of some kinds may grow at the expense of those of other species. The

reaction will be written

(9. 9) —moA — mhB — . . • = + ntf^H + * • •

.

The m's are small integers, so that the value of for one of the mole-

cules f, which is a reactant of the reaction as written, is the negative of

the number of molecules entering into the chemical reaction, is

then the number of molecules of kind f which are produced in the

reaction as written. For instance, for the simple reaction 2H2 + O2 *
2H2O the value of win, is —2, that of iwo, is —1, and that of mH,o is 2.
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If the molecule of type f contains atoms of kind -Y, then the

stoichiometry of equation (9) demands that

(9. 10) Z; = 0, for all x's.

r

The choice of the m’s of the left-hand side of the reaction as negative

quantities enables us to express this condition in the form of one sum.

Equation (10) is merely the mathematical statement that the total

number of atoms of each element remains constant during the course

of the reaction. The total number of atoms of the element X is

(9. 11) iV, =
r

One considers divisions of the system into parts consisting of the

Nj^ molecules of type f in C'.r cells of the same energy, For the

total number of atoms of the element X one has

(9. 12) JVx = L Z nxfNjf.
r i

The total energy of the system may be written as

(9. 13)

Hitherto the convention had been adopted that for each molecule

the energy is measured from that of the lowest quantum state. The
chemical reaction (9) is accompanied by a definite energy change. In

order to account correctly for this energy difference between the prod-

ucts and reactants it is necessar}'^ to adopt some common zero point for

the energy of the molecules. For the purposes of this particular reac-

tion it is sufficient that the energies of the lowest states, €of, be so

chosen that

D Wlf€ot =
f

wlujre Ac is the energy absorbed in the reaction as written at 0®K.

In general the most logical convention appeal's to be to choose all energies so

that the energy of every element is zero at the absolute zero of temperature,

that is, to make the lowest quantum state of the elements zero. In calculating

the free energies and other thermodynamic properties of individual molecules,

however, it is often convenient to do as we have indicated in the past, namely,

to choose the energy of the lowest state of each molecule as zero, since the calcu-

lated values are then not subject to change if redeterminations of the heats of

reactions are made. In the absence of complete thermodynamic and spectral

data it is not practical as yet to adopt a uniform convention.

In all discussions involving the equilibrium in chemical reactions it
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will be assumed that the energies of the lowest quantum states of the

molecules are so chosen that the energy of the reaction is correctly

accounted for. From section 6f we know that an alteration in the

energy scale involves a multiplication of the partition function by a

factor and a linear additive change in the functions E, F, A, and

H, but no alteration in the values of S, C^r, and Cp, at a given temper^

ature.

Returning now to the system under discussion, the entropy Sj^ for

the part jf of the system is calculated as before. The sum of over

all values of j and of f gives the total entropy, which will be a maximum
at equilibrium, subject to the conditions that the total number of

atoms of each element is constant, and that the total energy of the

system is constant. Equations (12), each multiplied by a constant

kaxj and equation (13), multiplied by kfi, are subtracted from the total

entropy. The differential coefficient of this with respect to every

is zero when the entropy is a maximum,

^ ^ = 0-

dNjf Si X

With (1) for dSis/SNii, this becomes

(9. 15) fc In^ = fc La,n,{ +
i^is X

{9. 16)
ŵr

I'his equation is of the familiar form of equation (5) with

replacing a^. The thermodynamic properties of the system are the

sums of the properties of the individual gases as with all mixtures of

perfect gases, but a definite relation is prescribed between the of

the different molecule kinds. Previously the known number of mole-

cules has been used to evaluate the a^'s. The relationship that

ctf = ZlaxWxr imposes a relationship on the values of the and this

restriction we shall show to be the mass-action law.

One may identify with —n^/kT^ in which is the chemical
X

potential of the molecules of kind f in various ways. For instance, one

knows that, for the part of the system, must be the same as for all

parts of the system, so that

(9 . 17 )
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which by comparison with (15) shows that

(9. 18) nt = —hTYfiixnxi.
*

The quantity a* is some characteristic of the X atoms which is con-

stant throughout the system, is the number of X atoms in the

molecule f . If the monatomic gaseous element X were in equilibrium

concentration in the system, for that molecular species f, only for one

X would differ from zero, and ite value would be unity. For such a

case the interpretation of the quantity a* is clear, namely, a* = —
This interpretation is really general, — fcTa* is the chemical potential

of the atoms of the element X in the system, and from this value the

equilibrium concentration of the monatomic element in the system can

be calculated. We may write (18) as

(9. 19) /if = Z^if/ix,

the chemical potential of the molecules is the sum of the chemical

potential of the atoms composing them, and the chemical potential of

the atoms of any one element is a constant for all parts of the system.

In Chapter 6 the equation equivalent to (16) combined with (18)

was used to calculate /i by a relationship

(9. 20) = iVf =
i 3

in which Qj. was called the partition function of the molecule. For the

re;acting mixture, relationship (19) between the values of /Xf for the

different kinds of molecules puts a restriction on the values of the

iVf's, which are no longer independent. We shall now proceed to

show the nature of this restriction.

If the equilibrium product for the chemical reaction (9), in terms of

the numbers of molecules, is formed, and calculated by the use of

equations (20) and (19), the /Xf’s cancel in the expression, and the

equilibrium product is obtained as a function of the Qf’s alone. The

steps are:

Kn = njVf"r = ne,"f,

from (20). Using (19), one sees that

r » r

but from (10), that ^nhrtxf = 0, one obtains = 0, and
t t

(9. 21) Kn = = ncf-f.
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Whereas the left-hand side of this relation depends on the numbers
of molecules only, the right-hand side is independent of the concen-

tration.

Equation (21) gives a relationship between the values of Nf which
must be fulfilled for every chemical reaction with respect to which the

system is in equilibrium. The fact that A\y is independent of the den-

sities is known as the mass-action law.

This equation ma}*^ readily he transformed into the usual thermo-

dynamic relation between the equilibrium constant in tv.rms of the pres-

sures, and the difference in standard free energy of products and reac-

tants. Let N be th(i number of molecules of a gas which, in the volume
of the system, would exert unit pressure at the temperature of the

system. The partial pressure of the molecules f will be N^/N The
value /Lij? of the chemical potential of the f type molecules at unit pres-

sure is related to and A" by

(9. 22) 9i =
N

from equation (20).

The sum of the chemical potentials of the products at unit pressure,

minus the sum of the chemical potentials at unit pressure of the reac-

tants of the chemical reaction (9), is

(9. 23) Am® = Z m^M?,
f

and may be called the change in the chemical potential at unit pressure

for the reaction, or the standard chemical potential change.

Using (22) and (23) with (21), one obtains for the equilibrium con-

stant, in terms of the pressures,

(9. 24) K, = n /T> - n - n (|)"' -

The free energy per mole is just Avogadro's number times the chemical

potential, = iVoM®, and the change of free energy per mole at unit

pressure in the reaction is AF® = ATqAm®, so that (24) can be written as

(9. 25) AF® = -JKTlnAV

This is the usual thermodynamic form for the relationship between the

free energy change in a chemical reaction and the equilibrium constant.

The whole derivation given here is unnecessarily long. One might

at once use the condition that the total free energy of the system

(9. 26) F = £ AT^Mf
. f
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must be a minimum at equilibrium. Since for the chemical equation

(9) the ratio of the number of molecules of the different species pro-

duced in the reaction is fixed as the ratio of the tm^^s, one can set

dN^ = mjdn. At equilibrium

(9.27)

From equation (6. 9) for the chemical potential,

(9. 28) = kT']^m^(ln — In Q^) = 0,

r f

which is equivalent to equation (21).

In the original derivation the statement that the total number of

atoms of each element was to remain constant was the only condition

imposed on the possible changes in the numbers of molecules of each

species. The result of the considerations is that for any conceivable

stoichiometrical equation the condition for the corresponding etiuilib-

rium constant must be fulfilled. The condition for a chemical equa-

tion to be stoichiometrically possible is just the condition of equation

(10)

. If, however, the chemical system is actually in equilibrium with

respect to one of the conceivable chemical reactions, but not in equi-

librium with respect to others, then the conditions for only the particu-

lar equilibrium constant with respect to which the system is actually in

equilibrium must be fulfilled. The other conceivable reactions are to

be regarded as inhibited. This offers no formal difficulties.

One condition implied in the derivations of the equations was that all

the quantum states of the molecules which are actually reached with

appreciable probability can be said to belong to one or other of the molec-

ular species considered. If the temperature were so high than an

appreciable fraction of the material existed, at an3
' instant, in quantum

Slates which could not be definitel}'^ assigned to any of the molecular

species considert^d, then the equations derived here begin to lose their

meaning. This has already been discussed to some extent in the last

chapter.

The total free energy is given b^’ equation (20), in which the values

of the A^^s must be calculated from the original quantities of material

introduced, using the stoichiometrical relations of the chemical equa-

tion, and the condition of equation (21) imposed on the equilibrium

constant.

A particularly simple example may be instructive to consider. Sup-
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pose that the chemical reaction is of the type

(9. 29) A = If,

that is, a simple isomeric change in a single molecule.

The equations are then particularly simple. Since Na + = A’,

the total number of molecules, one obtains, from (21), Na/A\ —
Qa/Qb, that

(9. 30)
TiT Qtt T.T- Qb

“ “ ^
qWqi

^
’

and

(9. 31) /ia = kT(\n Na - 111 Qa) = kr [111 N - ln(0a + Qb)l

which is equal to /i?,, as it must be at equilibrium. For the total free

energy,

F = NaMa “F ^ 6M6 “ ^ Ma ~ ^ M6»

(9. 32) F = RT[\r^ Nq - In ((?« + Qo)]

per mole of gas.

The chemical reaction has been artificially introduced by considering

some of the quantum states of the molecule as belonging to one mo-

lecular species, and others as belonging to a different specries. The free

energy of the systems is correctly calculated either by using the equa-

tions for a chemical reaction at equilibrium, or by counting all the

quantum states of both species together as being states of one molecule.

9d. The Entropy of Isotope Mixing

The equations of the last section will now be applied to a particular

reaction, namely, the dissociation of a molecule into its elementary

monatomic constituents. The reaction will be written as

(9. 33) AXn ^ A + nX.

The subscript m will be used to refer to the molecule AXn- The equi-

librium constant K^r for this reaction is, from (21)

(9. 34)
NgNl QgQl

Nm Qm

A complicated extension of this case will now be considered in detail^

namely, that the X atoms in the system are not all identical, but con-

sist of many isotopes, for which the running index y will be used. The

number of isotopes of type y existing in the form of the monatomic gas
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will be denoted by A^y, with 2!)iVy = the total number of atoms of
V

element X which are free.

There will be a large number of different molecules corresponding to

the chemical fonnula if the n X atoms of the molecules consist of

various isotopes X^. The index f will be used as a subscript to indicate

the different kinds of molecules. In every molecule of kind f there will

be a definite number, Wyf, of isotopes of type y, so that

(9. 35) Z«vf = «•
V

The molecule f will also have a definite symmetry number which will,

in general, be different from and never greater than the symmetry

number y^ of the molecule composed of only one isotope. In general,

however, the molecule type is not completely determined by the values

of the riyf's and Tj., but there will be several isomers of different f's

with any given values of the Wy^-’s.

The reaction

(9. 36) AXi^Xl, •
• • X;, = ^ + ZnyXy

V

will be considered. For this reaction

(9. 37) Xa- =

It will be explicitly assumed that the partition function Qy for every

isotope y is the same, so that we may write that Qy = Qx for every y.

This will be so if the masses of the isotopes differ by negligible fractional

amounts and the nuclear spin is neglected. It will also be assumed

that the partition functions of the various molecule types f differ only

in so far as they have different symmetry numbers, so that

(9.38) =

This will also be the case if the isotope mass differences are negligible

and if the temperature is high compared with the energy separation of

the rotational levels of the molecules. At low temperatures the sym-

metry number loses its significance entirely as a determining factor in

the magnitude of the partition function, and the subsequent consid-

erations are entirely invalid. The differing masses of the isotopes cause

differences in the values of the QyS and the Q^'s, which become quite
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appreciable for the light elements but approach zero asymptotically for

the heavier elements. This difference is neglected here.

If these items are left out of consideration, (37) may be written

(9. 39) K.N

NallNy'^
y QgQ," 7f

Qm Tm

VoW» 7r

Use must now be made of the fact that the sum of 7m/7r
for all the dif-

ferent isomers with fixed values of the is always n !/ Ilriy !, the

multinomial coefficient,

(9. 40)

fiyf oonatant*ny

n I

liny

!

V

This can be seen as follows. The total number of permutations of

the n atoms of element X among the n positions in the molecule is

n !. For the isomers of fixed number of each isotope ny, only the

fraction l/llriy ! of all the permutations do not correspond to the

exchanges of identical isotopes. Therefore, n !/liny ! exchanges of

non-identical particles are possible. Any one of these exchanges leads

to a configuration which is either a new isomer, or which could be

obtained from the original configuration by a rotation. This rotation

has to be such that the resultant configuration is not identical to the

original one, but would be if the difference between the isotopes were

neglected. Furthermore, all possible isomers of this value of riy, and

all such rotations of these isomers, are produced from one configuration

by these permutations. The sum of the numbers of these rotations for

all possible isomers of given riy is therefore n !/liny !.

The number of these rotations for the isomer ivill be shown to be

7m/7r-
If ®^11 the atoms X were distinguishable there would exist

configurations, obtainable from each other by rotation alone, which

would be equivalent with indistinguishable atoms. If some of the

isotopes are identical certain of these configurations become equivalent.

Since the symmetry number, 7^,
signifies the number of ways in which

the isomer f may be rotated into equivalent positions, it is seen that only

the number Jm/yt of configurations are not equivalent for the molecule

Equation (40) is thereby proved.

If the total number of molecules Nm is found by summing the equa-
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tion (39) for N( over all values of f, with the use of (40) one finds

(9. 41) - ZNt
t

or, using J^Ny = AT*,
*»

(9. 42)

NaQ„ „
OaQ." t

2ny-n
V

n !

nn,;
y

-AT,
ny ATaQtH

(ZAT^)*,

NgNj' QaQ;
A^m Qm

The last equation is identical with (34). The equilibrium between the

molecules and the atoms is the same whether or not the element consists of a
mixture of isotopes.

The total number of atoms of the isotope y' combined in the mole-

cules is the sum and will be designated Nmy^, With equa-
i

tion (39 ) summation can be performed analogously to (4 1 ) . One obtains

(9. 43)
Kj T'n iV

^aQtn 'ip
^ •

f QaQx fly *»•»*•« i

V
»

_ a r n

which, by comparison with (41), shows that

(9. 44)
A^my* Nyf

The total number of atoms of the element X combined in the mole-

cules is nNmt so that the ratios of the numbers of isotopes is the same in

the molecules and in the monatomic gas.

Since the equilibrium constant is the same whether or not there are

different isotopes, the difference between the entropies of the mona-
tomic gas of the element and of the molecules is the same in the two
cases. The absolute entropy of the monatomic gas has a term due to

the mixing of the isotopes, equation (8), which is

(9. 45) = —J^XyR In Xy,

V

per gram atom of element, in which Xy *= Ny/Nx is the mole fraction

of the isotope y. The same additive contribution to the absolute

entropy is present per gram atom of element in any gas containing

this element.

The special assumption of the chemical equation (33) that the
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molecule contains only one other atom, A, in addition to the atoms of

the element X is obviously unnecessary. The conclusions are equally

valid for a molecule consisting only of X atoms, or one containing many
other atoms of various kinds. It is further clear that there would be

no difficulty in extending the argument to a molecule for which two or

more of the elementary constituents consisted of mixtures of isotopes.

The assumption that the nuclear spins of the isotopes are zero, or all

equal, is likewise unnecessary. If the nuclear spins of the isotopes

differ, the partition functions Qy would contain the factor to 2Sny + 1

and the partition functions of the molecules ( would be proportional to

n (2Sn,, + l)"*'^ so that the ratio TL Qy^^/Qf in equation (37) would
V V

be unchanged by the presence of the nuclear spin. It is only this ratio

which is used in the subsequent equations.

At temperatures for which rotation is classical the existence of iso-

topes has no effect on the equilibrium of any chemical reaction, or on

the difference of entropy involved in the reaction, except in so far as

the differing masses of the isotopes affect the mechanical properties of

the constituents of the system and therefore the partition functions of

these constituents. The percentage difference in mass of different iso-

topes of the lighter elements causes sufficient mechanical diff(‘rc»nces to

permit their separation.

9e. An Interpretation of the Equilibrium Equation

The physical significance of the equation for the equilibrium con-

stant is seen most clearly if the classical equation for the partition

function is used.

If the potential energy, [7, of the molecule f as a function of its /
coordinates is defined in such a way that the lowest value of the potential

at the equilibrium position of the atoms is zero, then the classical equa-

tion for the partition function may be written

(9. 46) Qf
- ® dpi • • • dpf rfgi • dqj.

In this equation the total number of degrees of freedom / is three times

the number of atoms comprising the molecule, is the symmetry num-

ber of the molecule, and is the Hamiltonian or energy of the

molecule expressed as a function of the / coordinates and the / momenta.

The exponential of — e®/fcr as a factor arises from the choice of zero

as the lowest value of the potential for each molecule whereas the

energies of all molecules have to be measured from a common zero point.

The energy of the molecule in its lowest state, the energy of the gas

per molecule at 0®K., is e®, and must be chosen in such a way that the
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energy of a chemical reaction at O^K. is given by the sum of the c^’s

of the products minus that of the reactants. This choice assures one

that the energies of reactions at other temperatures will be correctly

given by the thermod3mamic energies of the gases calculated from the

partition functions.

The most natural choice of the value of cp would be that it is the

energy necessary to form one gaseous molecule f from its elements at

O^K. Other choices differing from the above by a constant amount,

per atom of element. JT for all molecules would, however, be equally

satisfactory.

The choice of the / coordinates used in the Hamiltonian in (46) is not

prescribed, except by reasons of convenience. If the Cartesian coor-

dinates of the atoms are used, the kinetic energy is of the form

(Px + Py + for each atom, Jf. Integration over the momenta
of equation (46) leads to the factor {2innxkT/h^)^^^ for the three degrees

of freedom due to the atom X, if the is included with the momentum
term. There remains the integral of the exponential of the negative

potential energy divided by fcT, integrated over the whole configuration

space of the molecule and divided by the symmetry number. This

term has the dimensions of a volume raised to the power of the num-

ber of atoms in the molecule, and may be called the product of the

volumes Vx available to the atoms of the molecule,

(9. 47)
,~U/kT

Tidrx-

The equilibrium constant of a reaction is equal to, equation (21),

the product of the partition functions, Q^, of the products of the reac-

tion, divided by that of the reactants, each partition function raised to

the power of the number of molecules entering the chemical equation.

If is the energy of the reaction at absolute zero,

(9. 48) Ac® *
r

in which the are the number of molecules f produced in the reac-

tion as used in equation (9). The energy exponentials of (46) used in

the expression (21) for then lead ta a factor The factors

(2irm,fcr/fc*)^^^ due to the momenta cancel in the numerator and

denominator since the number of atoms remains constant in the reaction.

Using the classical expression (46) for with (47) and (48) in the

equation (21) for the equilibrium constant Kif, one obtains

— Hi?* (products)

(,. 49) X. - top -
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The equilibrium constant Ks is equal to the factor multiplied

by the ratio of the products of the volmnes available to the atoms in the

products of the reaction, divided by the volumes in the reactants. The
tendency of the reaction to go, as measured by the equilibrium con-

stant, is directly proportional to the product over all the atoms of the

ratio of the volumes available to them in the products and in the

reactants.

9f. Estimation of Equilibrium Constants

Equation (49) serves as a very useful method of making rapid rough

estimations of the magnitude of equilibrium constants for reactions.

It is somewhat more convenient to eliminate the large numbers involved

in the equilibrium constant expressed in numbers of molecules, by
using, instead, Xp, the equilibrium constant expressed in partial pres-

sures. As in deriving (24) the conversion of ATjsr to £p can be accom-

plished by multiplication olKs with where N is the number of

gaseous molecules which would give unit pressure in the volume of the

system.

In equation (49) the calculation of the volume available to every

atom always gives the total volume of the system as one term in the

product for every molecule. That is, one may treat one atom in every

molecule as free to wander about the whole system, dragging the mole-

cule with it; the other atoms of that molecule are constrained to lesser

volumes in the neighborhood of the one atom considered as free. The
multiplication of this by results in replacing each of these terms

V by V/N = V®, the volume per molecule at unit pressure. The other

volumes of the constrained atoms on the molecule are to be calculated

as before.

The equation for the equilibrium constant Kp is, then,

(9. 50) Kp
Hvx (products)

llvx (reactants)

in which Ac^, equation (46), is the energy absorbed in the conversion of

the reactants into the products at O^K.

A simple numerical calculation shows that, if the unit of pressure is

taken to be one atmosphere, the volume per molecule is

V r 9
(9. 51) V® = — = 4 X 10®—- cubic Angstr5ms.

The one-dimensional length available to an atom along the coordinate

giving its distance from another atom to which it is bound is twice the
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average amplitude of vibration. The value of ( as a function of

temperature is given rather accurately by the empirical equation, in

which D is the energy necessary to break the bond,

(9. 52) ( =
)

^^gstrom units,

if the vibration is classical. This equation follows from the empirical

fact that the product M\M2i>?/(M\ + M2 ) is about 10® times the

energy of dissociation D in kilogram calories for almost all diatomic

molecules.

The two-dimensional surface available to an atom rotating about

another is

(9. 53) A = 4irrg,

in which ro is the distance between the two atoms.

In order to illustrate the use of such considerations, we shall estimate

the equilibrium constant for the reaction

l2*a.—^2Igas, lOOO'^K.

The energy D necessary to break the I— I bond is 35.40 k cal. per mole,

so that D/RT = Ae^/kT = 17.81, and is 1.8 X 10”®.

The volume available to the free 1 atoms, divided by the number

of atoms N necessary to give a pressure of one atmosphere, is, from

(51), w** = 13 X 10® (A.U.)®, which occurs squared in the numerator

of the expnission for Kp, For the molecule, the same term v® occurs

once in the denominator, canceling one of the i;®^s in the numerator.

The constrained atom of the molecule moves in a shell of radius ro and

thickness { about the atom which was regarded as free. For I2 the

value of ro is 2.66 A.U., and from (52) { = 0.24 A.U. at 1000°K. The
volume 47rro£ must be divided by the symmetry number two. One
obtains 27r/o£ = 10 (A.U,)®, as the volume available to the dependent

atom. The ratio tJ®/27rro£ = 1.3 X 10^. One finds

(9. 54) = 2.3 X 10-*.

"ij V 2irro£

Iodine should be approximately one per cent dissociated at one atmos-

phere pressure and 1(KK)°K.

Equation (50) is an exact equation if the volumes per atom are cor-

rectly calculated. The classical equation (47) for these volumes is, of

course, valid only at rather high temperatures. There exists a quantum-

mechanical equation analogous to (47), making use of the wave func-
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tions, by which the available volumes of the atoms, to be used in (50),

can be calculated at any temperature.

The effect of the quantum-mechanical equation is always to give ti,

values which are larger than the classical values by an amount which

decreases with increasing temperature. This is a consequence of the

uncertainty principle. The integral over a momentum in the partition

function gives the average value of the momentum at the temperature of

the integration. If, however, this average value of the momentum is

so small that its product with the average range of position along the

conjugated coordinate, as calculated by (47), is less than h, the uncer-

tainty principle would be violated, and one must e.vpect the quantum-

mechanical calculation to lead to a greater position uncertainty. Stated

differently, the contribution of the product of any coordinate with its

conjugated momentum to the partition function Q can never be less than

unity.

The contribution of one of the three momenta associated with an

atom to Q is {2nnkT/h^y'^, which is (T/SOO)^^^ cm“‘, in which

M is the atomic weight. If for any coordinate the classical expression

leads to a range of less than (SOO/TJlf)^^^ A.U., then one can be sure

that the clas-sical expression Ls false, and a better approximation will be

obtained by inserting this value for the available length to the atom in

this coordinate. If the cla.ssically calculated available length is larger,

for every coordinate, than (300/TiW)*^^, then the classical equations

may be deemed to be sufficiently valid.

The use of (50) for making estimations of the equilibrium constants

of chemical reactions is by no means limited to such simple cases as the

dissociation of diatomic molccuh!S. Especially if the molecules on the

two sides of the chemical reactions have certain groups in common, such

as, say, CH3 radicals or phenyl radicals. Cells, the volume available

to the atoms of such a radical will be approximately the same for the

reactants and products and will cancel out of the expression for Kp.



CHAPTER 10

GENERAL EQUATIONS FOR SYSTEMS COMPOSED
OF DEPENDENT PARTICLES

(a) Introduction, (b) The Equation for the Work Function A. (c) Appli-

cation to the Perfect Gas. (d) Systems of Fixed Energy, (e) Energy

Fluctuations in Systems of Fixed Temperature, (f) The Semi-Classical

Expression for Q. (g) The Configuration Integral Qr. (h) The Probability

of a Configuration, (i) An Alternative Derivation, (j) Summary of

Thermodynamic Equations.

10a. Introduction

If no forces are acting between the particles of a system, the system

is said to be composed of completely independent particles and is a

perfect gas. In the preceding five chapters the methods for calculating

the thermodynamic properties of such systems have been developed,

and the equations derived have been discussed in some detail. If the

forces acting between the particles of the system are so large that they

may not be neglected, the system is not a perfect gas, although, if the

forces are weak, it may exist entirely in the gaseous phase, obeying an

equation of state differing but little from that of the perfect gas. At
lower temperatures, or smaller total volumes, part or all of the system

will be in a condensed phase, liquid or solid. The methods of calcu-

lation for such systems will be developed in subsequent chapters.

The thermodynamic entropy S of a system was defined in Chapter 4

as k In 8, in which 8 is the total number of quantum states available to

the system at a given total energy E and volume V. If the quantity

8 is known as a function of the energy, it is possible, in principle, to

calculate all the thermodynamic properties of the ^tem by means of

equations (4. 34) and (4. 35), defining the temperature T and the

pressure P in terms of S and E.

This method, however, is not practical for most systems. In the

mechanical description of the system, which is necessary before the

methods of statistics may be applied, the energy, as a function of the

coordinates q and momenta p which make up the phase space, is explicitly

given. The equation for the volume in phase space, measured in units

of y

,

between two surfaces of constant energy E and E -J- AB, which

is the classical equivalent of 8(B) AB, is not given explicitly and is

often extremely difficult to calculate directly.

218
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In treating the perfect gas the quantity Q{E) was directly determined

in section 5d only for monatomic molecules. The method which was
employed to derive the equations for general gases did not calculate

this quantity. Instead the value of <S = fc In Q was found for that

distribution of molecules in various energy ranges which made this

quantity S, the entropy, a maximum. The entropy for this equilibrium

distribution was used as the value for the uninhibited system. The
equation for the entropy was not obtained directly in terms of the

energy, but in terms of a parameter /3 which was shown to be very

simply related to the temperature.

Since the temperature, rather than the energy, of a system is most
easily measured experimentally, the equations for the thermodynamic
functions in terms of temperature and volume or temperature and
pressure are entirely satisfactory, and indeed rather preferable to those

in terms of the energy and volume.

If the molecules of a system are not independent it means that they

have mutual potential energies due to the forces acting between them.

The energy of one particular molecule is then an ambiguous quantity,

and the distribution of molecules with respect to their individual ener-

gies has no meaning.

One may, however, by means of an artifice first introduced by Gibbs,

make a calculation which is strikingly similar to that of the distribution

of molecules in a gas with respect to their energies, even for systems

composed of dependent particles. This method treats what is called

an ensemble, or large number of independent identical systems. The
individual systems, which are of macroscopic size and may consist of a

mole of material, play the same role in the ensemble that is played by

the independent molecules of the perfect gas. The energy of the sys-

tems composing the ensemble is not fixed, but the sum of their ener-

gies, that of the ensemble, may be.*

The temperature of the ensemble may be defined by the condition

(4. 34) that {dS/dE)v = 1/T. The distribution of the systems with

respect to their energies may be calculated and is found to be given by

an equation which is analogous to (6. 6) for the molecules of a perfect

gas. The essential difference between the systems of the ensemble and

the molecules of the gas is that the energy-distribution curve of the

former has an enormously sharper peak which is due to the greater com-

plexity of the unit. The energies of the systems fluctuate about a mean

value, as do those of the molecules in the gas, but the fractional fluctu-

ation is smaller, the greater the size of the system. For systems con-

* In the canonical ensemble of Gibbs the.total energy of the ensemble was not

explicitly fixed.
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taining a mole of material the percentage fluctuation is entirely negligible.

The ensemble is conceived of as a large number of identical systems,

each with the same numerical volume, in thermal contact, and coex-

istent in time. For a given total energy of the ensemble equations will

be derived for the equilibrium fraction of members of the ensemble in

any portion of the phase space of these members.

Now the chance that any randomly selected system of the ensemble

is in a given portion of phase space is just the fraction of systems of the

ensemble which are in this part of the phase space. With the assump-

tion that the systems are ergodic, and the knowledge of the Liouville

theorem of section 2j, it also follows that this is the fraction of time

that one system spends in this portion of the phase space.

The properties of a given system depend only on the values of its

external variables, such as temperature and volume, and not on the

particular type of the other systems with which it is in contact. It

therefore follows that a randomly selected member of the ensemble has

the properties of any system of this type at the given temperature and

volume which it is assumed to occupy in the ensemble.

Actually, in section lOi we shall derive the same equations that are

discussed in the succeeding few sections by considering one system in

contact with an infinite heat reservoir, without the assumption that

this heat reservoir consists of an ensemble of systems which are identical

to the one considered. That is, in section lOi a proof is given of the

equations of this chapter without the use of the concept of an ensemble.

It is also to be remarked here that in section lOd the fact that these

equations are numerically equivalent to those obtained by the method

of Chapter 4 is discussed.

10b. The Equation for the Work Function A
A large number, iV, of independent identical systems will be treated.

The total sum of these systems will be referred to as the ensemble.

The equation for the work function A, per system, will be calculated

and found to be related to a quantity Q. The analytical expression for

the partition function Q in terms of the energy states of the system is

exactly the same as that of the partition function per molecule Q in

terms of the energy states of the molecule.

The N independent systems of the ensemble are constrained to dif-

ferent regions of space, but the volume allotted to each has the same

numerical value, V. Unlike the perfect gas, in which all the molecules

occupy the same volume F, the systems of the ensemble, although

mechanically identical, are distinguishable and numbered by the por-

tion of space which they occupy. This is the only fundamental differ-
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ence between the ensemble of independent systems and the perfect gas

composed of independent molecules. The quantum state of the

ensemble is given by the state or quantum cell of each individual num-
bered system. Because of the identity of the systems, to every quantum
cell k of system a there exists a corresponding cell k of every other sys-

tem, but the ensemble is in a different quantum state when a is in cell k
and b in cell m than when a is in m and b in k, owing to the different

spatial positions in the ensemble of the systems a and 6.

The systems of the ensemble arc in thermal contact and may exchange

energy. The energy of the whole ensemble will be designated by NE^
so that E is the average energy per system.

The cells, or quantum states of the systems, will be divided into

regions for which the subscript index j will be used. The Qj cells of the

jih region* will all be contiguous in the phase space, and in particular

the energy of all of them will lie between Ej and Ej + AjE, The total

number of systems whose quantum states are in the region j will be desig-

nated by Nj. The entropy NS for o, given distribution, defined by the

values of the N/s, will be calculated, and the equilibrium value of the

numbers Nj determined by making this a maximum, subject to fixed

total energy NE and fixed total number of systems N. This entropy

of the equilibrium distribution is then also the entropy of the uninhibited

ensemble.

The number of quantum states allowed to Nj specified systems in the

region j is since each of the systems may be in any of Qy cells, and

the systems are numbered. For the whole ensemble the number of

quantum states consistent with an arrangement in which the region for

every one of the numbered systems is specified is IlQy^^ To obtain

the number of states of the ensemble consistent with a given set of the

numbers iVy, this must be multiplied by the number of ways in which N
numbered systems can be assigned to the regions, Nj to the region j,

namely N ! /HiVy !. The entropy NS of the ensemble is k times the

logarithm of this product,

(10. l; iVS = ! n = k^N \nN + ZNi In
,

if the ensemble is inhibited to the distribution defined by the value of

the ATy’s.

The equilibrium values of the numbers Nj will be those for which

* The symbols Qy and Ej instead of Cy and €y in the corresponding calculation for

the perfect gas are used here in recognition of the fact that the systems are of macro-

scopic and not molecular size.
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NS is a maximum with given fixed value of the total energy NE and

number of systems iV,

(10. 2) NE =
i

(10. 3) AT = riVy.
3

The maximum entropy may be found by subtracting kfi times (2) and

ka times (3) from (1), and setting the derivative with respect to Nj
equal to zero, namely,

-?r (NS -kaN - k$NE) = jfclln^ + In AT - a - /3£,1 = 0.
dNj L Nj J

This leads to the equation for the ratio of Nj to Oy,

(10. 4) In§ = a - In JV + Nj =
Nj

For the detennination of a this equation is used in (3) ;
one obtains

N = J^Nj = Afc—Q,
3

where Q is defined as

(10 5) 0 =
3

so that

(10. 6)

With this value of c~“ in (4) the equation for Nj becomes

(10.7) Nj^^itje-O’^i-

The total energy NE of the ensemble may be obtained by the use of

(7) in (2), which leads to

(10. 8) NE = -ZNjEj = ^ Z^jEjC-o^i = -N •

i Q i op

If equation (4) for In (flj/Nj) is used in (1) for the total entropy NS the

result,

ATS - Jfc[JV In AT + J^fjia - In Af + fiEj)]
i

» Jfc[Ar« + ^AT^

may be transformed, by the use of (6) for a into

(10.9) S^kQnQ + pE)-
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This is the average entropy per system of the ensemble in the equi-

librium distribution of the systems with respect to the regions, and it is

therefore the entropy per system of the uninhibited ensemble.

The quantity fi may now readily be determined by the use of the

fundamental equation (4. 34) for the reciprocal of the temperature,

diNS)\

MNE)}rjf

I

T \dE/Y^jif L

In view of equation (8) the first two terms in the brackets are seen to

cancel, leaving

(10.10) /3 = —

Inserting (10) for /3 in equation (5) for the partition function of the

S3rstem Q, one obtains

(10. 11) Q =

If j3 is replaced by 1/kT in equation (9) for S, the equation

(10.12) 5*fclnQ-|-|

is obtained.

The work function A, or Helmholtz free energy of the system, is

defined thermodynamically as A = E — TS, so that

(10. 13) A = -kTlnQ.

The quantity Q may be called the partition function of the system.

It is the quantum-mechanical analogue of the Gibbs phase integral.

Just as in the identically defined partition function of the molecules,

Q, the symbol Qj may be omitted from under the summation sign if the

summation is explicitly extended over all non-degenerate quantum states

n of the system. The alternate equation,

(10. 14) Q =
a

all quantum

may then be used.
"

10c. .^plication to the Perfect Gas
Equation (13) with (14) is applicable to any system whatsoever. If

the s}rstem itseU is composed of N independent identical molecules it

is a perfect gas, and the application of these equations must lead to the

results previously obtained for this type of system. We shall proceed

to show this.
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The energy of a perfect gas is the sum of the ener^es of the individual

independent molecules composing it. If the index v is used to dengnate
the Hh molecule of the gas, 1 < i' < and m, the quantum cell of the

molecule, so that^ is its energy, one may write for E^, the energy

of the system in the quantum state n,

(10. 15) = Zw
m

The quantum state n of the whole gas is given by the number of

molecules in the cell m, rather than by the values for the individual

molecules, since the molecules are unnumbered and indistinguishable.

A quantum state of the system for which no more than one molecule is

in any cell m will correspond to JV ! different sets of the N numbers
differing only by permutation of the indices v. A Fermi-Dirac system,

for which no two molecules may have the same quantum cell m, will

have no states n for which any of the numbers exceed unity. For

an Einstein-Bose system the states n corresponding to some of the

iVm’s exceeding unity will correspond to fewer than N ! different sets

of m„’s, since permutations of the molecules in the same cell m do not

lead to new sets.

In either case, if the volume per molecule, V/N^ and the temperature

T are moderately high, the number of cells m in any energy range Ae

will exceed the number of molecules of this range so greatly that the

quantum states of the system for which two or more of the molecules

have the same value of m will be a negligible fraction of the states.

Only in this case can the calculation be performed easily. One may
then use equation (15) for in (14), and sum over all values of

for each r, dividing the sum by N ! to correct for the fact that approxi-

mately N ! different values of the m„’s, all with the same total energy,

correspond to one state n of the system. This means that the mole-

cules are treated as statistically independent, and must lead to the

equations of a Boltzmann system.

One obtains, as an equation for the partition function Q of the system,

Since is just the partition function Q of the molecules, (6. 8),

this leads to

(10. 16) Q . J-QAT.
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Using (16) for Q in (13) for the work function with the Stirling

approximation for the logarithm of the factorial, one obtains

(10. 17) A = kTNi^x^ AT - 1 - In Q).

Since kTN =* PY for the perfect gas, and F A + FF, the equation

for the free energy F is

F = fcrJVdn AT - In Q),

and for the chemical potential m = F/*V, for this one-component sys-

tem,

(10. 18) M = feTdn iV - In Q).

This is identical with equation (6. 9) for m in terms of the partition

function Q per molecule, which was the starting point for the derivation

of all the equations of the perfect gas.

lOd. Systems of Fixed Energy

The equation for the work function A as derived from the method

of Chapter 4 for a system with given fixed energy E appears, at first

sight, to differ from (13). In this section it will be shown that the

equations are numerically equivalent for large systems, and the seem-

ing discrepancy will be discussed.

The entropy S of a system of fixed energy is S = A; In i2(F), in which

S2(F), the number of quantum states of the system, is a function of the

energy E. For the work function, A = E — TSj one may write

A = -fcTlnn(F) + F,

(10. 19) A A;rin[Q(F)e-'®/*n,

where the temperature T = {dS/dE)v^ is determined by

( 10 . 20)

1 d In G(F)
^T dE

In equation (13), that A = —fcTlnQ, with (11) for Q, it is seen

that, since for the large systems considered here G is a continuous func-

tion of the energy, the sum (11) may be replaced by an integral, and

A may be written as

(10. 21 )
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The integrand of this integral has a maximum value when

or

(10. 22 )

1 ,
d In^ as ^ e

T dE

Equations (22) and (20) are identical. Equations( 21) and (19) for A
differ in that (21) gives A bs —kT times the logarithm of an integral,

and (19) as — fcr times the logarithm of the largest value of the inte-

grand. Equation (19) gives the value of A for a system of fixed energy,

whereas (21) gives A for a system in contact with a heat reservoir the

temperature of which is such that the average value of the energy of the

system is the same as that used in (19).

For systems of macroscopic size the value of the logarithm of the

integral Q, and that of the greatest value of its integrand, are numer-

ically equivalent. This may best be illustrated by considering a

simple example.

A system with a constant heat capacity, Cy — Gk, has the energy

(10. 23) E = GkT.

The entropy S is f Cyd In T or In T — C. The number of

quantum states SI = is therefore proportional to 7^, or from (23)

to E®. We may write

(10. 24) S1(E) = a£^.

With this equation for i}{E) the integral Q, in the expression (21)

for Ay is

(10. 25) Q « dE = aikTf^^G 1,

Jo

and Ay using the Stirling approximation for In 6 I in (21), becomes

(10. 26) A = -kT[G In GkT - G + In a -h In kT].

The alternative expression (19) for A leads to

(10. 27) A = -kT[G In GkT - G + In a].

The difference between (26) and (27) is only in the one term InkT,

whereas a term G\nkT occurs in both. Now if the system contains
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approximately a mole of material the number Q is of the order of mag-

nitude of the number of molecules, or about 10^. In this case it is

clear that equations (26) and (27) do not differ numerically by an

appreciable fractional amount.

The reason for the numerical equivalence of the two forms (19) and

(21) for A lies in the enoimous steepness of the function

around its tTiftYirniim value. This will be further discussed in the next

section.

lOe. Energy Fluctuations in Systems of Fixed Temperature

From equation (7), with = l/kT, it is evident that the number of

systems of the ensemble with energies between E and E + dE^ and

therefore the probability that a system of the temperature T has an

energy of this range is proportional to

dE.

For the system considered in the last section the function

has its nriftYimiim at Em == GkT, and Q obeys the equation 12 = aE^

.

The ratio of the value of the function for the energy Fm(l + lo

the value at Em is

Pa « (1 +
In Pa -Gln(l + d) - GA.

Expanding In (1 + A) = A — A^/2 + , for small values of A, one

finds

A*
(la 28) InP = -G—-

Numerically, if G = 10*^ for A =* 10““®, one finds that In Pa * ~10^

and Pa =
We see that, for a system containing approximately a mole of material,

the chance Pa, per unit energy range, of observing it to have an energy

differing from its most probable energy by one part in a hundred million

is For all practical purposes the energy of a macroscopic system

of fixed temperature is constant. The integrand of the function 0 is

seen to have an enormously steep maximum at the most probable energy

.

However, equation (13) for the work function A of a system with

fixed temperature is not limited to large systems. It therefore relieves

a logical difficulty inherent in the treatment of Chapter 4. As has

already been discussed in section 4f the value of the entropy defined by

iS » A; In $2 is incompletely determined owing to an uncertainty in the

energy of the system. The corresponding uncertainty in S is frac-
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tionally negligible for macroscopic systems, but precludes the use of this

equation for the entropy of a single molecule if its energy is known.

The whole procedure of Chapter 4 is essentially limited to large sys-

tems. This is entirely in agreement with thermodynamics, which

assumes strict functional relationships between energy, temperature,

volume, and entropy, and is consequently also applicable only to macro-

scopic systems.

The method of this chapter, which is adapted from that of Gibbs;

allows us to calculate the thermodynamic properties of a system in equi-

librium with a heat reservoir of macroscopic dimensions, quite inde-

pendently of the size of the system concerned.

The thermodynamic properties are all then functions of the temper-

ature. The value of the energy so calculated, for instance, is the aver-

age energy, and not an energy which the system will certainly be

observed to have if removed from thermal contact with its surroundings.

The temperature is defined only in terms of the sum of the system and

the heat reservoir as T *= {dS/dE)v^y which is legitimate as long as the

heat reservoir, at least, is large.

IQf. The Semi-Classical Expression for Q
The classical equation for the partition function of the system Q, as

for the partition function Q of the molecules, equation (6. 48), is an

integral over phase space.

If the number of degrees of freedom of the system is /, there are /
coordinates, gi,

• •
•

, g/, and / momenta, Pi,
• •

•
, p/, conjugated to the

coordinates, which together form the phase space of the system. In

this space, the volume W measured in units of includes W quantum

states, provided that the volume W is large enough in all dimensions

and that there arc no identical particles in the system. If there are

Ni identical atoms of kind i, the number of quantum states £2 is

(10. 29) n =
J
“

f/Jlff. J

• • • ^3/ • Api • • • Apf,

if each of the products Aqk Apjt is large compared to h. The division

by TlNi I is necessary because permutations of the numbering on the

atoms lead to this many corresponding regions of the classical phase

space which are physically identical and indistinguishable and corre-

spond to but one quantum state.*

* The division by TlNi I is not correct in regions where all the coordinates and

momenta of one particle have the same value as the corresponding ones of another

particle whirii is identical with the first. This is a region for which there are no
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Provided that the energy, or Hamiltonian, H(p,q), varies negligibly

compared to kT for all changes = h, the sum (14) for Q may be
replaced by the integral

i

Except for the factor in front, this integral is the classical Gibbs phase

integral. We shall refer to expression (30) as the normalized phase

integral, or simply the phase integral.

If the Hamiltonian is separable as a sum of terms, each ol which

includes one or a few only of the various pairs of conjugated coordinates

and momenta, and these variables occur in no other terms, the integral

becomes a product of simpler integrals. Of course, in this case, the

quantum-mechanical sum also becomes the product of simpler sums,

and, as in the case of the partition function of the molecules, the func-

tion Q can be written as a product of terms.

For some of the coordinates the change Aqic Ap* = h may result in

a change of Hip^q) which is appreciable compared to kT, For these

(coordinates and momenta the summation over the quantum states

must be used instead of the integral form (30). If the other coordinates

and momenta occur separately in the Hamiltonian the integral form

may be kept for them alone.

lOg. The Configuration Integral Qr
If the Cartesian coordinate system is used for the N point particles

making up a system, and if as is usual when magnetic forces are neglected

the potential energy depends on the coordinates only, the Hamiltonian

contains the momenta only as the sum of 3N terms of the type p^l2mi^

in which m, is the mass of particle i. Equation (30) may then be inte-

grated readily over the momenta, leading to the product of 3N integrals,

each of the type

(10. 31) = (2Tm,fc7’)*'2

quantum states at all if the wave function is antisymmetrical in permutations of

these particles, Fermi-Dirac systems. If the wave function is symmetrical, Einstein-

Bose systems, the number of states will be greater than given by (29), since the per-

mutation of the two identical particles, which never leads to a new quantum state of

the system, also does not lead to a different region of the classical phase space in this
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The equation for the normalized phase integral may then be written

ay./2

as

(10. 32)
IlAM

The configuration integral, Q,, is defined as

(10. 33) f rfn • • •

(10. 34) (hi = (Ixidyidzi,

and U(q) is the potential energy of the system as a function of the

coordinates.

This integral, the integrand of which is the exponential of the nega-

tive potential energy divided by kT, and which is extended over the

configuration space of the S3’stem, is the only volume-dependent portion

of the normalized phase int(^gral Q.
The product of any coordinate qt with its conjugated momentum

Pin has the dimensions of energy multiplied by time. This follows

from the definition of as dT(q4)/dqky in which T{q4) is the kinetic

energy expressed as a function of the coordinates q and their time

derivatives 4 . As long as the units of energy and time are kept fixed

the element of volume in the phase space, dqi • dpi * • * dq/ • dpj remains

unchanged b)" a transformation to new’ coordinates with their con-

jugated momenta. The element of volume in the phase space divided

by // is dimensionless.

The volume element of the configuration space, dxi dyi dzi • •

dxjv dyjsr dzx, of dimensions length to the power 3A, is not, however,

generally given by the expression dqi • • • dq/, for g(‘neraliz('d coordi-

nates Qf but can be expressed as some function of the 9 ^s, the Jacobian,

times this product, /(g) dgi • • • dq/.

Equation (32) giving the relationship between Q and was derived

using the Cartesian coordinate sj’stem, for which the integration over

the momentum space could be easily performed. However, the func-

tion U(q)y the potential energy of the s^’stem, may become much more

simple in some coordinate system other than the (Cartesian. In this

case the configuration integral may be integrated in the generalized

coordinate system, but care must be taken that the correct expression

for the volume element of the configuration space is used.

lOh. The Probability of a Configuration

The quantity Nj/N, the ratio of the number of systems in the region

j to the total number of the ensemble, is the probability Pj that any
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randomly chosen system will be found to occupy one of the quantum
states of the region j. From (7) this is

(10. 35) Py = ^

The probability P^ of finding a system in the single quantum state

n is

(10.36) P,=»^ = le-*./*r

The probability that a system, known to be in the quantum state n,

is at a certain place q in the configuration space formed by the / coordi-

nates q, is, per unit volume of the configuration space, given by the

square of the wave function,
| ^n(9) 1^- The vrave function is, of course,

normalized, so that the integral of
| P over the configuration space

is unity.

The multiplication of Pa in (36) by
[ ^n(^) and summation over

all quantum states of the system, gives the probability, P(g), of finding

the system in any quantum state whatsoever, but in the spatial part

q of the configuration space,

(10. 37) P(q) dri • • drjv = ^ 1 4'n(q) I" dr,
• • • drs,

where the symbol dr, — dxi dyi dzi is used for the element of the con-

figuration volume due to the tth particle.

This expression may, of course, be integrated over any portion of the

configuration space to give the integrated probability of that portion.

Since the integral of
| I* over the whole configuration space is

unity, and = Q, it is seen that the integral of (37) over the
n

whole configuration volume of the system is unity.

The classical equation for the probability P{p,q) of finding the sys-

tem in any part p, q of the phase space is obtained from expression (30),

(10. 38) P(p,q) dp dq~ e"®'"’*’''**’ dp dq.

The classical expression for P(g) analogous to (37) may be obtained

from (38) by integration over the momenta, and can be seen to be

(10. 39) P(j) dri • • • drif = — dri • • drjv.

Sir
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KM. An Alternative Derivation

We shall now undertake an alternative derivation of equation (38) for

the probability of finding a general system of known temperature in a

given portion of the phase space. This derivation avoids the use of

the ensemble, although the method is somewhat similar to that employed

previously.

We use, as before, our knowledge, derived in Chapter 4, of the prop-

erties of a system of constant energy, and also, this time, our knowledge

of the thermodynamic equations of a perfect monatomic gas. The
transition from the system of constant energy to one of known temper-

ature is made, as before, by considering a system a in equilibrium with

a very large reservoir 6, the combination of system plus reservoir having

constant energy. If the system and the heat reservoir were independent,

the Hamiltonian and energy of their sum would be the sum of the

Hamiltonians and energies, respectively, of the two parts. A weak

interaction between the two systems is assumed, however, which offers

a mechanism permitting energy to flow from one to the other, but which

is not great enough to influence the assumption of additive energies.

The probability that the system a is in a certain portion of phase space

is therefore influenced by its contact with the reservoir 5. It is neces-

sary, consequently, to know something about the properties of b.

In the method followed in section 10b the properties of the reservoir

were determined by the assumption that it consisted of an ensemble

of systems identical in character to a. In this derivation the properties

of the reservoir are fixed by the assumption that it consists of a perfect

monatomic gas, the equations for which have already been derived.

Since the behavior of a depends only on its external variables the

limitation on the character of the reservoir is inessential. The nature

of the reservoir is fixed only in order to determine explicitly the analyt-

ical expression for certain quantities entering into the equations derived

for a. The results are perfectly general for the system a in contact

with any heat reser\»'oir determining its temperature.

The calculations will be carried out assuming the system o to obey

the classical equations. It is clear that the derivation for a quantum-

mechanical system would be very similar.

The symbols p and q will designate values of the complet.e set of

momenta and coordinates for the combined system a and reservoir b,

Pa and qa those of o, and ph and qh those of the reservoir b. The

Hamiltonian and energy of the combined system are the sums of those

of the parts;

(10. 40) “ -^a(PaiQ:o) "1“

E “ Ea Eff
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The classical phase volume WgAE of the system for a given range,

AEj of energy, between E and E + AE, for the combination of the two
parts a and 6, is

(10. 41)* WeAE - dp dq.

where the integration is to be taken over all values of p and q between

the energies E and E + AE.

The probability P Ap Aq that the combined system of constant energy

is in the region Ap Aq of phase space is

(10. 42) P ApAq = Ap ^9-

We now wish to find the probability, Pa{pa,Qa) ^Pa Aqa, that the

part a of the combined system is in the region of phase space between

Pa and Pa + Apaf qa and qa + Aqa- This function PaiPa^Qa) is found

by integrating P of equation (42) over all values of p^ and qi which are

consistent with the values of pa and qa of the part o, and also with the

condition that the total energy of the combined system lies between

E and E + AE. The only way in which the values of the momenta
and coordinates of a limit the values of those of the part b is through

the condition that the total energy lies between E and E+ AE. that is,

by limiting the energy of b to lie in the range between Et, and Et, + AE,

where

(10. 43) Elf = £ — HaiPatQa)*

By introducing the symbol Wb{Ei,), defined as

r
ft+a®

dph dqb,

-o

the integration to be made over the whole phase space within the

indicated energy range, one finds

(10. 45) Pa(Pa,q.) Ap« Aq. = —^»(P«».ga)]

The quantity Ws in the denominator of (45) may be evaluated by

first integrating (41) over the momenta and coordinates of the part 6,

* The qrmbol W is used here for completely classical phase volume, uncorrected by

division with hf or IIN. The induslon of these normalizing factors would only add

to the complexity of the equations and would completdy cancel in the end.
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which, with the iise of (44), leads to the equation:

(10. 46) S dpa dQa,

in which the integration can be extended over all energies of the sys-

tem a, as long as it is understood that the function Wh becomes zero

for negative values of its argument.

At this place the properties of the reservoir b will be used. If b is

assumed to be a perfect monatomic gas consisting of Nh molecules, the

quantity Wh is proportional to the surface of a 3Nb dimensional sphere

of radius (section 5d). Thus Wi, is proportional to the

3Nb/2 power of its argument

(10. 47) WJ[E - Ha{Pa,qa)] “ KXIE - Ha(Pa,qa)]^*'^.

Equation (47) being taken with (46) in (45), the proportionality con-

stant K is seen to cancel in numerator and denominator. Dividing

both numerator and denominator by one obtains

(10. 48) Pa(Pa,qa) ^Pa Ha ~

(P..9a)l
E

iSTTJT?

We now go over to the limiting case where the size of the reservoir 6

approaches infinity, for only in this event will the temperature of the

system a be completely determined. The energy of the combined sys-

tem E and that of the reservoir Ej, then approach the same value, and

the temperature is determined by the equation

(10. 49) ^NbhT ^ Eb^E.

As Nb approaches infinity the equation

(10. 48')
r _2_ g.(p.,g.)T^*^
L 3Nt kT J

becomes asymptotically valid. Use of these two equations in (48)

leads to

Pa{Pa,qa) ^Pa Ha
g-B,lp,^/hT

J’e-«.(p..O/*rdp.dg.

Apa Aqa.

Introduction of Q, equation (30), shows this to be identical to (38).
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IQj. Stumnaiy of Thermodynamic Equatioiu

The partition function, or sum of states of a system, is

(10. 60) Q = Q(E)e-‘^^^dE.
a j Jq

all quantum all ragionB /
tat« a

The classical expression for Q is that of the normalized phase integral,

O"- »>')«-^Jf- dp,

- (—

)

where Q, is the configuration integral, and Ni is the number of identical

particles of type t in the system. The configuration integral Q, is

(10. 51) ^SS S dri - • • drsi

where du = dx,- dyi dzi, and U (q) is the potential energy of the system.

The work function, also called the Helmholtz free energy, is

(10. 52) A = -JbrinQ.

The derivative of A with respect to the volume is the negative of the

pressure,

(10. 53) P -

or, since Q, is the only volume-dependent factor of Q, this may also

be written

(10. 53') P -

The pressure-volume product, PV, is

(,0.54) PV.„(^)^.5P(^)^.

The free energy F, which is the Gibbs free energy or the free energy

at constant pressure, is A -|- PV, so that

00.56) p.ir[_i,Q + (£M)J.
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The derivative of the work function with respect to the temperature

at constant volume is the negative of the entropy,

(10.56) 5- -(!)_. +

The energy £ is A + TS,

(10.57)

which is the same as equation (8) with 1/kT replacing p. The heat

content H ia E + PV, and so

(10.58)

The heat capacity of the system at constant volume, Cy, may be

obtained from (57) by further differentiation with respect to the tem-

perature, as



CHAPTER 11

THE CRYSTALLINE SOLID

(a) The Ciystal. (b) Harmonic Vibrations, (c) Classical Calculation,

(d) Another Derivation of the Classical Formulas, (e) Quantum-Mechani*
cal Treatment, (f) A One-Dimensional Crystal Model, (g) The Fre-

quencies of Simple Isotropic Lattices, (h) The Debye Formula.

(i) Deviations from the Debye Formula, (j) Strain and Stress Variables.

11a. The Crystal

In the solid state the distance between neighboring atoms or mole-

cules is so small that the forces which they exert upon each other are

considerable.

The investigation of the solid crystalline state is simplified by its

great regularity. X-rays show that a crystal is in a state of complete

order. A certain fundamental arrangement of a few atoms or mole-

cules is repeated periodically in space. In an ideal crystal, therefore,

the centers of the atoms form the points of a regular space lattice which

is triply periodic, that is, periodic in three directions which are not in

the same plane.

If the lattice arrangement is stable, the lattice points must be equi-

librium positions for the atoms, which implies that there must be no

force acting on any atom, or, in other words, that the forces upon any

one atom from all others must exactly cancel, if all atoms are at the

lattice points. Moreover, all tensions must be zero, and the equilibrium

position must be an energetic minimum.

If the forces are known it can be decided by calculation which lattice

is stable for a given substance. In practice the opposite procedure is

usually employed, and from the observed crystal structure conclusions

are drawn about the forces. This, however, is a purely mechanical

problem and does not interest us here. In all calculations of this chap-

ter the lattice structure is assumed to be given.

lib. Harmonic Vibrations

Actually, the atoms are never at rest at the lattice points, but per-

form small vibrations around these equilibrium positions. Let us

denote the Cartesian coordinates of the deviation from the equilibrium

position for each atom by t,-, the index i running from 1 to 3iV, if the

crystal contains N atoms; let m,- be the masses of the particles and

Pti » m^i the momenta. For small deviations from equilibrium the

237
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potent iai (energy of the system may be developed with respect to the

f,’s. If w*e choose the potential at the equilibrium, = 0, as the zero

of energy, the development has no constant term. The linear terms in

(i must vanish, since it was supposed that no forces are acting upon the

atoms in their equilibrium positions. The first terms arising are there-

fore quadratic in the and the energy may be written as

3N 1 3N

(11. 1) H(p,o = r i r

For small enough displacements cubic and high(u*-order terms may be

neglected. The mechanical task of calculating the force constants

from the forces between the atoms is bej'ond the scope of this book.

If, instead of the deviations £,* of individual atoms, linear combinations

of £,\s are us(id as coordinates, the potential energy in (1) expressed in

these new coordinates remains a quadratic expression, and the kinetic

enc'rgy a quadratic expression in the corresponding momenta. It is a

tht‘orem of mechanics, or rather of mathematics, that there exist 3A"

special independent linear combinations of the 3iV £i*s, which are called

the normal coordinates and shall be designated by g,. They have the

property that, if (1) is expressed in the gj's and the corresponding

momenta pi, the potential energy contains no cross terms between two

different g,’s, while the kinetic energy is a sum of squares,

1 3N

( 11 . 2 ) J/(p,g) = « 2 (Pi +

These normal coordinal es are analogous to those used in Chapter 8 for

polyatomic molecules. They differ only in that the mass factor before

the momenta has been eliminated by a change of scale.

The Hamiltonian is thereby expressed as a sum of 3N functions, each

containing one of the coordinates and the corresponding momentum
only. Moreover, these functions are the well-known Hamilton func-

tions of a harmonic oscillator of frequency v**. The yf are complicated

functions of the force constants If the crystal is stable, that is, if

the energy for g,- = 0 is a minimum, all yf must be positive.

The equations of motion are

dll
Qi

dH
^ - Pi, = Pi ^
opi dQi

--iirViqi,

and the classical solution

Qi » Ai cos (2irvrf -f 5i),

If only one normal coordinate g» is excited, the others constantly zero, all par-

ticles in the crystal vibrate with the same frequency Vi but with different ampli-
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tudes, determined by the coefficients with which the displacement (t enters

into Qi. In a general state of vibration the motion of each particle is a com-

plicated superposition of motions of different frequencies.

Equation (2) shows that a crystal consisting of X strongly coupled

atoms is mechanically equivalent to a system of 3A' indci)endent oscil-

lators. The terms of third and higher orders in in the development of

the potential energy, which were neglected in (1) and (2), introduce a

coupling between the oscillators and make an exchange of energy

between them possible. These deviations from harmonicity in the vi-

brations establish the equilibrium distribution of energy between the

oscillators. They play, therefore, much the same role here that tlie

collisions do for the perfect gas. With increasing temperature, as the

amplitudes of vibration become larger, it may be no more correct to

neglect these terms. Their influence on the specific heat, etc., of the

crystal can then be calculated in essentially tlui same way that was used

for molecular vibrations in (^hapter 7. This is analogous to the fact

that at high concentration in a gas the forces between atoms give rise to

deviations from the perfect gas law.

Among the normal coordinates there will be three whi(‘h describe the

simple translations of the crystal as a whole along th(‘ three axe.s,

etc., and three which correspond to rotations around the center of mass.

The forces counteracting these six motions are zero. It follows that six

of the viS in (2) vanish, so that tlie second sum should be (‘xtcjiided only

over 3N — 6 terms. How^ever, since six is a very small nuinb<T com-

pared to 3iV, this difference may be neglected.

A state n of the total crystal is determined by the numbers n* of

quanta of vibration for each normal coordinate. Its energy, according

to equation (2. 22), is

3N

(11. 3) £’n = L (n. +

The lowest energy of the ciystal, W'hcn all n/s are z(;ro, is In

treating the diatomic and polyatomic molecules the zvvo of energy was

altered to give the lowest quantum state zero energy. ^Ve shall ttot

follow that practice here.

The partition function of the system becomes a product of the par-

tition functions for each individual oscillator,

3Ar

n t = 1 nt>0

3.V

(11. 4)
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These factors differ from the Q, used for molecular vibrations in the

gas, equation (7. 19), by the multiple e"*'*^**^ originating from the zero

point energy. One obtains

(11. 5) In Q = - Z + In (1 - c"*'*/**’)] •

In this formula equal atoms have been treated as unnumbered, and the com-

plete identity of the atoms has been taken care of. For, if there are N equal

atoms in the crystal, and if the position of each of these atoms is specified, all

atoms are in different quantum states, owing to their different location, and the

partition function of each crystal with a specified arrangement of atoms must

be divided by N !. On the other hand, there exist N ! crystals which are out-

wardly indistinguishable and differ only in the distribution of the N identical

atoms over the lattice points. These two factors cancel.

11c. Classical Calculation

In classical mechanics the partition function Q is given by an integral

over all coordinates and momenta. Since (p,g), (2), is a sum of func-

tions of one coordinate and momentum only the classical Q becomes a

product of integrals each referring to one oscillator only, namely,

(11. 6) Q - n I / f dpi dqi.
—00 —00

Since all the oscillators are different the division by N I is omitted (com-

pare end of last section). The integration can be performed immedi-

ately. Since /
dx — (ir/6)*^*, one obtains

J -ao

kT /3JV \-i

(11.7) Q = 117-= (fcr)®'"(n/(v.)

From this one derives the average energy of the crystal at the tempera-

ture r, according to equation (10. 57), to be

(11. 8) E~kT^

Here we encounter again the law of equipartition of enei^: the sjrstem

has ZN degrees of freedom; the energy depends quadratically on each of

the ZN coordinates and momenta; the average energy for each coordi-

nate and for each momentum at the temperature T is ^kT. The heat

capacity at constant volume is therefore a constant for all crystals,

namely,

(11 . 9 ) Cr - - SNk.
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If the substance in question is monatomic, the value of Cv for a mole of

substance is 3/2 » 5.959 cal. deg."*^. This theorem is called the law of

Dulong-Petit. Experimentally, direct determination of Cv is difficult.

Cv is, however, connected with the easily measurable quantity C/», the

heat capacity at constant pressure, through the relation

q a^VT
( 11 . 10) Cp-Cv^ >

K

in which a signifies the linear expansion coefficient.

(11 . 11 )

and K the compressibility,

(11 . 12)

This relation is based on purely thermodynamic considerations and may, for

instance, be derived in the following manner. Cp is defined as the increase of

the heat content, H * + PV, with temperature.

(11. 13)

Since the natural variables of the energy are V and S, the first term on the

right-hand side may be transformed

By putting this in (13), using the definitions (9) and (11), and remembering

that (dE/dV)s = —P, idE/dS)v * T, one obtains

(11. 14) Cp^Cv +

The term (dS/dV)T may then be transformed by using

With definition (12) we obtain

ZaT /dS^
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Finally, it follows from the form of the free energy, dF » Y dP — S dT, that

and, applying definition (11 ) again,

Cp — Cy
dofiVT

K

The value of Cy calculated from these experimental quantities is in

excellent agreement with the theoretical one (9) for most monatomic and
simple ionic crystals at room temperature. However, for all substances

the heat capacity falls below this classical theoretical value at low

temperatures and, indeed, approaches zero at the absolute zero. Classi-

cal mechanics was unable to account for this. The explanation is given

by the quantum-mechanical treatment of the vibrations (see section 1 le).

A few monatomic crystalline elements show deviations from the law of

Dulong-Petit even at room temperature. These are diamond, beryl-

lium, and silicon, which have some unusually large vibrational frequen-

cies. In crystals containing di- or polyatomic molecules, for instance

CO3
** groups, the vibration frequencies of the molecule are so high that

their average energy at room temperature is less than the classical value

kT (compare section Hi).

The entropy of the crystal at room temperature is, according to

equations (10. 56) and (7),

E r 1

(IL 15) S = ]fe In Q -h - = 3iYA; In Jfcr + 1 -— L In hvi
T L diV iwml

It is seen that for the calculation of the classical heat capacity of crystals

the knowledge of the values of the frequencies is unnecessary. The fre-

quencies, however, contain the volume dependence of the entropy and

therefore play an important part if the equation of state of the crys-

tal is to be determined. The product of the frequencies, which enters

into the entropy, also has to be known if calculations of equilibrium

between the crystal and other phases are made.

lid. Another Derivation of the Clasrical Formulas

The equations of the last section can also be derived by the methods

developed in Chapter 4, in much the same way that those of the per-

fect gas were derived in section 5d.

The classical number of states of the system below the energy E is

first determined. For 3N oscillators this is h~^ times the integral over

all Pi’s and qi’s subject to the condition that 52(pi + 4ir®Vi^) is less or
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equal to twice the energy. If new variables rji = 2vviqi are introduced,

we find

(11 . 16)

i

The integral on the right-hand side is the volume of a sphere of 6iV

dimensions and of radius Its value is (2ir€E/^ii\)^^ (see

Appendix A V). This leads to

QiE)dE = {
— ) n (/--ir*.

It is again seen tliat the logarhhm of the number of states below the

energj' E, In J'Q(E) ilE, and the logarithm of the number of states at the

energy E, differ by the negligible term In (SN/E). The entropy as a

function of energy and volume becomts
at/

(11. 18) S^k In a = ZNk (1 + In B - In 3.V) - k^ In hvi.

The temperature is obtained by differentiating S with respect to E,

i _
T ~ XdEjv

~ E ’

(11. 8) E = SNkT,

which is equation (8) obtaiiuid before. Inserting (8) into (18) we obtain

equation (15) for the entropy as a function of temperature and volume,

3N

S = 3A'it(ln AT + 1) - A- E In Ac,.

1-1

lie. Quantum-Mechanical Treatment

For the quantum-mechanical treatment In Q is given by equation (5).

It is seen that all thermodynamic quantities are sums of functions, each

referring to one o.scillator only. The average energy of the (srystaf at

the temperature T becomes, according to equation (10. 57),

(11. 19)

= kT

upon introduction of the abbreviation m,- — kv,/kT. The constant

term in (19) is the zero point energy of the oscillators, which remains at



THE CRYSTALLINE SOLID (Sec. lie

the absolute zero of temperature. The heat capacity at constant volume

and the entropy, according to equation (10. 56),

3isr r
“I

(11. 21) S = i In Q + - = * Z: ln(l - c""*) + '

For high enough temperatures these three expressions, (19), (20),

(21), go over into the corresponding classical ones (8), (9), and (15).

For, if fcr is large compared to the difference between energy levels for

every oscillator, kT^ hvi, Ui <tCl, a development with respect to w/

may be made and higher powers neglected. One then obtains

(11. 19')

The zero point energy is precisely canceled by the term in the develop-

ment which is linear in Ui, and the first correction term goes to zero as

at high temperatures. The heat capacity is

(11. 20') Cv = 3A'fc [l -^ + • • ] •

The expansion for the entropy becomes

3W r 1 ~\

(11. 21') S = fc E 1^1
- In Ui +- w?

J
3Ar r 1 1

= SNkil + In kT) - k E I In hpi “ ^ •

J
•

It is seen that the quantum-mechanical equations have the classical

ones as the limiting case for high temperatures. Since it is known
experimentally that the heat capacity has reached the classical value

even at room temperature for most substances one must expect the

lattice frequencies to be very low compared to molecular frequencies.

The decrease of the heat capacity at lower temperatures is correctly

predicted by the quantum-mechanical formula. As the temperature

tends to zero, the average energy content of the crystal approaches the

zero point energy, and the heat capacity approaches zero. From (20)
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it is seen that the contribution of any one frequency to Cy decreases

exponentially as kT becomes much smaller than hv^ that is, as Ui becomes

very large. In that case the unity in the denominator may be neglected

compared to and the additive part becomes kuier^, in which the

exponential term is overwhelmingly important. However, the experi-

mental heat capacity of the crystal does not decrease as rapidly with

decreasing T at low temperature, but only with about the third power of

the temperature. This shows that it is impossible to approximate the

behavior of the crystal by oscillators of one or of a few frequencies only.

Some of the crystal frequencies are extremely low and are classical even

at very low temperature, so that the dependence of the sum of terms in

(20) on the temperature is different from that of any single term. The
detailed calculation of the frequencies in section llg bears this out.

The partition functions for the individual oscillators have, of course,

the same form as those obtained for the vibrations of di- and polyatomic

molecules, Chapters 7 and 8, except for the zero point energy. A
physical difference is brought in through the order of magnitude of the

frequencies. In this section the zero point energy of vibration has been

taken into the energy content, (19) and (19^), since it cancels out for

fully excited vibration.

It is interesting to note that if all 3iV frequencies of the crystal were

assumed to be identical, the thermodynamic functions of the crystal

would be the same as those for the vibrational contribution to ZN
identical diatomic molecules. One then finds the simple equations:

(11. 19") E = +

(11. 20") CV = 3M -^y-3.

(11. 21") S = 3iVfc|^-ln (1 - e-“) + ^7—]’

These are referred to as the Einstein equations for a crystal, and
(20'') is the Einstein equation for the heat capacity, the same as that for

the vibrational contribution of one frequency to the independent mole-

cules of a gas. Under this simple assumption of equal numerical value

to all SAT frequencies of the crystal Einstein* had first explained the

observed decrease of the heat capacity below the Dulong-Petit value of

^NkT at low temperature.

* Albert Einstein, Ann. Physik [4], 22, 180 (1907).
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In the following sections the problem of determining the Bctu&I fre-

quencies; or, more properly speaking, the number of frequencies in a

given frequency range, will be attacked.

Ilf. A One-Dimensional Crystal Model

The frequencies of a general three-dimensional lattice can be determined

only with the use of various approximations. Before discussing these we wish

to treat a simple crystal model which is not realized in nature, but which shows

the essential characteristics of a general lattice without cumbersome mathe-

metics.* This model is the so-called one-dimensional crystal.

Consider point particles arranged on a line, the x axis, and restricted to

move along that line only. The particles will be numbered according to their

position, from left to right, by indict t running from 1 to AT. It will be

assumed that neighboring particdes only act upon each other with a potential

energy def)ending on the distance betw’een them, — Xj). The total

potential energy of the N points is then given b^'

( 11 . 22) U = ^L\(xi+i~Xi).

If the points are placed equidistant the forces acting on any of the middle

particles from both neighbors cancel. A stable ec^uilibriuin is reached only if

there are also no forces acting on the two end points, a condition which deter-

mines the distance a between the points by the relation

(11. 23)
/d<p(r)\

\ dr Jr^a
= 0.

It follows that the minimum of potential energy is obtained if the particles form

a regular one-dimensional lattice. With suitable choice of the arbitrary zero

point of the x axis, the equilibrium position of the first particle is xi = 0; of the

2th particle, Xi = (i — l)a.

A small displacement of the iih particle from its ec^uilibrium point shall be

denoted by f i. The potential energy (22) may be developed with respect to

these quantities. The linear terms vanish on account of (23). If all terms

higher than quadratic in the (’s are neglected, the potential energy becomes

(11. 24) U={N- l)4>(.a) + i ,t>"{a) L (fm - {<)*,
• -1

where the symbol 0^^(a) is used to denote the second derivative of 0 with

respect to r at r = a. We shall now make the further assumption that the

masses of all particles are equal. The equation of motion for the ith particle

in this potential is then given by

ATI
(11. 25) mii = -^ (fc+i + f.-i - 2f,).

* M. Born and Th. von Karman, Physik Z., 18| 297 (1912).
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For the two particles at the ends, i = 1 and i * JV, the equations are some-

what different.

The equations (25) for different values of i are satisfied by a motion corre-

sponding to a standing wave, namely,

(11. 26) = sinin 1^"^* ^

in

^J
SttvL

Inserting (26) in (25) leads to

~47rVmt< = 0"(a) 2 roa - 2 = -0"(«) 4 sin= fi,

or

(11. 27)

Not the whole course of the wave function (26), but only its values at isolated

points Xi = a{i — 1), are of physical signihcance. It is seen that waves of wave-

length X' with fl/X' = (rt/X) + 1 or with a/X' ~ 1 — (a/X) give rise to exactly

the same displacements (i at every lattice point as those of wavelength X (in

tlie latter case with opposite sign, different phase). From (27) it follows that

tliey also have the same value of i/-. It is therefore sufficient to restrict our-

selves to wavelengths with (a/X) < or X > 2a. The frequencies take on all

possible values which the function (27) can have as X goes from infinity to 2a.

To the shortest w'avelength X = 2a corresponds the highest frequency,

= (l/7r)l0''(a)/ml'''‘*. The mode of this vibration is such that ncigliboring

particles have opposite amplitudes; the distance between nodes is JX = a,

etpjal to the distance between jiarticles. The occurrence of this smallest wave-

length is characteristic for the lattice structure in contradistinction to a con-

tinuum for which no lowest wavelength exists.

To avoid the complications arising from the ends we shall assume that the

two end points are fixed in their equilibrium positions, that is, (i = {jv = 0.

As in the case of the vibrating rod, to which this problem has great similarity,

this border condition of clamped ends influences the tyi^es of vibrations, but

not the distribution of the frcc^uencies. Besides, it reduces the numlier of

degrees of freedom by tw'o, ivhich is of little importance since X is assumed to

lie a very large numl)er. One of the types of motion excluded this way is the

simple translation along tlie x axis.

The border condition that the waves have nodes at the ends is taken care of

at i ~ 1, = 0 by choice of the phase factor a = 0 in (26). At t * AT it

imposes

. 27ra
sm— (iV — 1) * 0,

A

2(X - 1 )a

X
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where n is a whole number. The distance between nodes, that is, half the wave-
length X, must be equal to the length of the lattice, {N — l)a, divided by an
integral number.

For a one-dimensional continuum of length L all possible displacements, sub-

ject to the conditions that the ends remain fixed, can be represented by linear

combinations of functions sin (irnx/L), where n goes from 1 to infinity. The
amplitude factors of these functions represent the components of the Fourier

development of the displacement. They may therefore be used as coordinates

for the description of the system. If the mass is discretely distributed, accord-

ing to the previous discussion, the functions sin [imfi — l)/a{N — 1)] with

1 < n < A — 1 suffice; every conceivable displacement of the iV — 2 inner

mass points may be expressed as a linear combination of these iV — 2 functions.

The amplitudes of the wave functions may therefore be used as coordinates,

and the equations of motion show that they vary periodically in time. The
normal coordinates are

where An are the amplitudes in (26). The normalization factor in front has

been chosen such as to make the kinetic energy a sum of squares in the momenta

Pn » in without mass factors, in agreement with (2).

The JV — 2 frequencies are

(11. 28) Vn
irn

2(Ar~ i)
’ 1 < 7JI < iST - 2.

For the very low frequencies one may replace the sine by the argument in (27)

or (28) and obtain

(n.29)
J

It is seen that in a large lattice there exist vibrations of extremely low fre-

quency. Physically, these motions represent elastic or acoustic waves. The

quantity on the right-hand side is then the velocity of sound. For decreasing

wavelength, when (29) ceases to be valid, the velocity of sound is dependent

on the wavelength. However, if one uses (29) up to the shortest wavelength,

an approximation which has to be made for the general crystal, the error made

is not very large. The highest frequency would then become i[0"(o)/ml^'*

instead of (l/7r)[0"(a)/m]‘^*, as obtained from the correct formula (28).

llg. The Frequencies of Simple Isotropic Lattices

An approximative formula for the distribution of the frequencies of a

simple three-dimensional lattice may be obtained following a method of
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Debye.* Let us at first neglect the lattice structure entirely and treat

the crystal as an isotropic elastic continuum. If, for simplicity, the
crystal is assumed to have the shape of a cube with major axes parallel

to the X, y, z axes, the proper vibrations of this block of elastic matter
are standing waves, the displacements at any point x, y, z being pro-

portional to

(11. 30) w(x,y,z) = sin 2irT*x sin sin 2irT,z.

The waves are characterized by vectors t* with positive components

rx, Ty, whose magnitude is inversely proportional to the wavelength,

I
r*

!

« The standing wave is a superposition of the eight progres-

sive waves of the same wavelength but different directions of propagation

given by the eight vectors (±Tx,d=Ty,±T,), which have the same
magnitude, but different sign, of components as the vector r*. The
nodal planes of the waves are parallel to the surface planes. The dis-

tance between the nodal planes normal to the x axis is (2rx)~^

The border conditions at the surface determine the possible vectors r*.

We may either stipulate that there is no motion at all at the surface,

that is, the surface particles are rigidly fixed, so that the wave function

(30) must have a node there, or that the ends are free to vibrate and are

therefore a place of maximum amplitude. In either case these con-

ditions demand that the length L of the side of the cube, divided by the

distance between the nodal planes normal to it, be an integer number,

n namely.

(11. 31)
2L

To every wave vector t*, (31), and function ?/, (30), there belong three

different types of vibration, since the displacements may be in any

direction in space. The three waves originate from the two transversal

and one longitudinal progressive waves. In an isotropic medium the

frequencies of the vibrations depend on the wavelength through the

relation

(11. 32) vi\ == i'2X = c<, I'aX = c/,

where C|, ci are the velocities of the transversal and longitudinal elastic

waves. The (compressional) longitudinal wave is the sound wave.

The number of longitudinal vibrations whose frequencies lie between

V and V + Av is then the same as the number of vectors T with

v/ci <
1 I

< (j' + or the same as the number of vectors n with

• P. P. Debye, Ann, Physik, 39, 789 (1912).
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positive, integer components n,, n^, n*, whose end points lie in a spheri-

cal shell determined by

— < + +
Cl

2L{v + Ap)

This latl^er number is asymptotically equal to one-eighth of the volume

of the spherical shell, namely, 4ir(L/cz)®*'^ Ai^. The number of trans-

versal waves in the same frequency range is twice the same expression,

but with Ci in place of ci. The total number of vibrations with fre-

quencies between v and p + Av is then, considering that L® = F, the

volume,

(11. 33) N(y) Ay = irV (\ + 4)
\Ct Cl /

In a lattice the form of the vibrations is essentially the same as in the

continuum. The displacements from equilibrium of a lattice particle in

a simple harmonic vibration are proportional to the value of a standing

wave, w, (30), at the equilibrium position. An essential diiTerence

enters, however, owing to the fact that now not the whole course of the

function w, but only its value at discrete points, is of physical impor-

tance. This introduces an upper limit for the component s of the vector r^,

that is, a lower limit for the wavelength. Motions with nodes closer

together than tlu' distan(je between neighboring particles may just as

well be described as motions with smaller t, greater distance between

nodes, just as in the one-dimensional lattice. If the lattice contains

N particles, there exist precisely N different wave vectors wiiich give

rise to functions u which are different from each other at the N lattice

points. This mc^ans that there exist ZN different modes of harmonic

vibration, as many as the number of degrees of freedom.

For motions with long wavelength the lattice structure plays no

important part, so that (32) is still fulfilled. Only, now the velocity of

the elastic waves will, in general, be somewhat different for different

directions. For wavelengths comparable with the distance betw^een

particles, (32) breaks down completely.

An approximate distribution of the frequencies may be obtained by
assuming (32) to hold for all permissible wavelengths and directions of

propagation. The velocity of the elastic waves must then be replaced

by some average oyer the different directions. The distribution of fre-

quencies is still given by (33). The lattice structure will now be taken

into account by cutting (33) at a highest frequency determined in
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such a way that the total number of vibrations has the correct value,

3A^, namely,

(11. 34) SN = 4irV'

3

dv

(34) ma}^ be used to eliminate the sound velocities out of (33), leading to

(11. 35) N{v)

for p <

llh. The Debye Formula

With this distribution (35) of the frequencies of the oscillators, the

average energy of the lattice at any temperature T may immediately be

calculated from (19). The average energy of one oscillator is multiplied

with the number N{p) Ap of oscillators with frequencies in the range Ap,

and the product integrated over p from zero to Pm

'“ZX 12

hp

2 + >/tr _ j

' dp.

This integral is abbreviated by the use of the symbol D{u) for the Debye

function,

DM 3 r'‘r^dT
(11. 36)

U^Jo c* — 1

*

in which

(11. 37)
hPm 6 hPn

kT
II 11

The (piaritity 6 is called the Debye temperature, or characteristic tem-

perature of the lattice. Using (37) in the equation for the energy, one

obtains

(1 1. 38) £ =
g

+ 3NkT D

Th(^ first term is the zero point energy of the oscillators.

The Debye function (3(i) is plotted in Fig. 11. 1. For purposes of

numerical calculation one can find two series approximations to (36),

one of which is valid at high and the other at low temperatures. The

range of temperatures for which the two series converge overlaps.
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parison the function - 1

’ for one oscillator is shown dotted.]

At high temperatures u is small, and since the integral extends from

zero to M, a; is small throughout the range of integration. One can

develop

3 ^ _
„3 ^ _ 1

- + x^/2 + x®/6 + i*/24 + 1®/120 + • • •)

and then integrate, obtaining

01 . 36') +

For low temperatures, ii is large, and it is more convenient to trans-

form to

DM 3 r dx dx "I

1 •'u c* •”
1

J

The first integral is a definite integral having the value irVl5. In the

second term x is large throughout the range of integration, and one can

develop

,
3,-1X e _ _3,-j

c* - 1 1 -
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Integration of this leads to

(11.36") Z){«) »^-^-(3 + ? + ^ + i|)e-“
5 tt* \ u vr «*/

253

\2 4m 4m® 8m®/

The energy of the crystal may then be written as

(11. 39) E = \ Nkfm + ^NkT
O ^(1)

SiVJfcTjl +(.+4
I

20VT 1680 vr,
+

for high and low temperatures.

The heat capacity at constant volume is the derivative of the energy

with respect to temperature.

Cy^ZNkD[-) + ZNkT—D\^-

The derivative of the Debye function is

dT \T/ T du

and, from (36),

jL
du

D{u) = - - • D{u) + -
u

3

C“~l'

so that

(11. 40) Cv = 3JVfc
3(0/7’)

1

if

At high temperatures the approximative formula is

1

(11. 40') Cr = 3Nk
1 20\T/

+
560 V7’,



254 THE CRYSTALLINE SOLID (Sec. llh

which goes over into the classical SNk at sufficiently high temperatures.

At low temperatures,

(11. 40") Cv = 3Nk
(jJ +

• .

.

j

Experimental measurements at very low temperatures bear out this

proportionality of the specific heat to the cube of the tempera-

ture.

It is seen that the he^at capacity (40), as well as E/NkTy depend only

on B/T, By shifting the temperature scale the curves for various sub-

stances should be brought into coincidence.

For isotropic monatomic crystals the course of the experimentally

observed specific heats is moderately well represented by a formula of

the type (40). Tlie valu(‘S of B, and therefore determined from

thermal data, are in fair agreement with those obtained from elastic

constants. The Debye temperature for most substances lies below room
temperature. This is in agreement with the observed and calculated

fact that the lattice frequencies, due to small force constants and large

vibrating massifs, are very small.

However, careful comparison of the experimental heat capacity curves

with those predicted by equation (40) shows consistent, although small,

discrepancies. Actually the proportionality of the heat capacity to

is observed for highc'r tc^mperatures than w^ould be predicted from the

Deb^^e equation. Blackman* has made a detailed calculation of the

number of fnHiuencies N{v) in a given frequency range for a three-

dimensional cubic lattice. His method is an extension of that used in

section Ilf for the linear lattice. Blackman finds that the curve of the

function N (v) is fairly complicated, deviating very considerably from the

law of equation (Ii5), and even showing a maximum at a frequency

considerably low^er than as well as the higher maximum at about Vm

predict'd in (35). It appears that the agreement with experiment

obtained with the Debye function is partly fortuitous.

For crystals which are not monatomic and isotropic, other, more com-

plicated types of behavior occur. Qualitatively, some of these are pre-

dictable. They give rise to heat capacity functions considerably differ-

ent from Debye’s. The behavior of such lattices will be discussed

briefly in the next section.

The entropy, a(;cording to (21) and (35), is determined by

* M. Blackman, Proc. Roy. Soc., London^ A169, 416 (1937).
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Partial integration of the first term brings this into the form

(11. 41) S = 3iVfc.{| • ^ (1)
- In (1 - e-*> »•)} .

At high temperatures this becomes

(11. 41') S = 3Nk
2240 X7’/

At low temperatures the approximation is

(11.41") + ...}.

The work function A = £ — TS takes the form

(11. 42) A = I
Nhy„ + 3NkT {in

(|;)j

iNhy^ - 3NkT
O

which may also be derived from the relation A = — A:T In

The Debye temperature $ depends on the interaction of the atoms and
therefore on the volume V of the crystal. The pressure,

P =

contains, therefore, ddIdVf a quantity which is not easily evaluated.

The heat content H, and the free energy F, differ from E and respec-

tively, by the term PV. However, the volume per molecule, V/N, in a

crystal is very much smaller, indeed about one-thousandth, of that in a

gas at room temperature and one atmosphere pressure. Except at high

pressure the term PV is therefore about one-thousandth of RT per mole,

and of little importance.

lli. Deviations from the Debye Formula

In the last two sections the transition from continuum to lattice was

made without specifying anything about the type of crystal.

The assumption was made, however, that the crystal be isotropic.

If it is not, that is, if the velocity of sound is very different for propaga-
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tion in different directions, the distribution of frequencies is necessarily

more complicated than (35), and the Debye formula must be expected

to fail. This indeed happens.

Simple, isotropic, monatomic lattices, although Blackman’s detailed

calculation shows that the distribution of frequencies is not given very

well by a formula of the type (35), still obey the Debye equation rather

remarkably.

The formulas of the last section may be used with some success for

many crystals of simple ions, like the alkali halides. These substances

form lattices in which each ion is surrounded by a rather large number
(six or eight) of equivalent neighbors of the opposite charge. The forces

acting upon the positive and negative ions are essentially the same, so that

the modes of vibration are of the same type as in the monatomic crystal.

The vibration with smallest wavelength and largest frequency in the

lattice is that where neighboring particles vibrate with opposite phase.

In ionic crystals like the alkali halides, neighboring particles are oppo-

sitely charged. This fastest oscillation corresponds then to a large

vibrating electric dipole moment and should therefore be capable of

emitting and absorbing light. This is indeed the fact. These optically

active frequencies of salt crystals are usually called Reststrahlen, or

residual ray frequencies, after the method by which they were first

observed. They are so far in the infra-red (optical wavelength between

20 and 150/a) that optical absorption methods failed until rather recently*

to disclose them. Rubensf discovered them originally by studying the

selective reflection of salt ciystals.t

Vibrations of slightly longer wavelength have slightly lower frequency.

If the masses of the different ions in the crystal are equal, or nearly equal,

as for instance in KCl, the optical frequencies of increasing wavelength

go continuously over into the elastic frequencies. The optical fre-

quency, Vo, is then simply the highest frequency, Vm, and may be used in

the Debye formula (40) to calculate the heat capacity. The total

number of degrees of freedom is, of course, three times the total number
of ions, or six times the total number of KCl molecules.

If the masses of the constituent particles are different, however, the

situation is more complicated. One finds then gaps in the frequencies,

that is, ranges of frequency between the optical and the elastic frequen-

* O. Reinkober, Z. Pkyaik, 30, 437 (1926); M. Czemy, Z. Phyaik, 66, 600 (1930);

R. B. Barnes, Z. Phyaik, 76, 723 (1932).

t H. Rubens and £. F. Nichols, Wied, Ann., 60, 45 (1897), and numerous later

papers.

t The laws of optics show that the frequency of the light which is selectively

reflected is somewhat different from that which is most strongly absorbed; the latter

is the true frequency of the vibrational moUon in the crystal.



£q. 11. 43] DEVIATIONS 257

cies, which correspond to no lattice vibration. In the alkali halides, for

instance, where one Reststrahlen frequency is observed, the lattice fre-

quencies form two branches, each containing half as many vibrations

as there are degrees of freedom in the lattice. The distribution of fre-

quencies in the lower or elastic branch is given rather well by (35),

replacing the number of ions, JV, by jN, The frequencies of the upper or

optical branch are ail higher than the largest one of the elastic branch,

and the highest of them is the Reststrahlen frequency. If the masses of

the ions arc very different all ZN/2 optical vibrations have closely the

same frequency.

The reason for tliis effect lies not in a difference of force constants but in a

difference in the vibrating masses. For tlie motion corresponding to the Rest-

strahlen frequency the vibrating mass is the reduced mass of the two kinds of

particles, mim2/(mi -f W2), which is smaller than the. mass of either particle,

and nearly equal to the mass of the limiter particle if nii and m2 are very differ-

ent. The vibrations of the optical branch consist primarily of \'ibration of the

different kinds of particles against each other, down to the vibration of the

lighter particles alone. The elastic branch consists of vibrations in which

neighbors move in phase, up to the motions of the heavier particles alone.

This can be seen very clearly in the simple one-dimensional lattice. Assume

the particles to have alternately different masses, mi and 7712
,
with mi > m2 .

The break in the frequencies occurs at the wavelength X = 4o, where every

second particle is standing still. To this wavelength correspond two motions of

exactly the same force constant but different frequency: for the lower one the

heavier, for the higher one the lighter, particles vibrate alone. The frequencies

are given by Pi = (l/7r)[0"(a)/2mip/® and V2 = (l/7r)[0"(a)/2m2P'* respec-

tively, since sin (7r/4) = 2“^^®. There are iN vibrations with longer wave-

length, which have lower frequencies than Pi, and with shorter wavelength

and higher frequency than V2i
up to the highest with pq = (l/ir)[<>"(a) (mi -f- m2 )

/2mim2l^'*.

In this case, a fair approximation for the specific heat may be obtained

by representing the heat capacity of the oscillators of the elastic branch

by a Debye formula containing 3JSr/2 vibrations. The freciuencies of the

optical branch may be considered to be identical to the Reststrahlen fre-

quency pqj so that their heat capacity is given by ZN/2 times the average

heat capacity of one oscillator. The energy of the crystal is similarly

calculated as the sum of two parts, each contributed to by ZN/2 degrees

of freedom.

(11 . 43)
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The Reststrahlen frequency is of the same order of magnitude as Vmt

so that the heat capacity of these substances at room temperature has

the classical value, kT times the number of ions.

Still different are molecular crystals, or crystals which contain molecu-

lar ions, for instance, COJ"' groups. The forces within the molecules

are usually much stronger than those between the molecules. The shape

of the molecule or ion complex remains, therefore, essentially the same

as in the gas or in solution, and the molecular frequencies, at least the

higher ones corresponding to the stretching of bonds and not to bending,

are but little influenced by the fact that the molecule is cemented into

the lattice. The molecular frequencies arc so much higher than the

lattice frequencies that their contribution to the heat capacity at room
temperature is very small. The contribution of the true lattice fre-

quencies may again be represented by a Debye curve.

llj. Strain and Stress Variables

The Debye equation gives the thermodynamic properties of the

crystal as a function of temperature in terms of one parameter, Vm or 0,

the maximum frequency of the crystal in question. It is tacitly assumed

that 6 is not a function of temperature, and the volume d(‘pendence

of 6f and therefore of the thermodynamic functions, has not been dis-

cussed.

Previously we have dealt only with gases, which are fluids, having the

characteristic that their thermodynamic properties depend only on

temperature and volume, and not on the shape of the containing vessel.

A crystal, on the other hand, resists efforts to distort its shape, as well as

changes of the volume alone. The thermodynamic properties of the

crystal, then, depend on other extensive variables than volume, variables

that have to do with the distortion of the shape of the crystal, the vari-

ous strains. These strains are usually defined in such a way that they

are intensive rather than extensive variables, just as the specific volume,

or volume per mole, is an artificial manner of introducing an intensive

property in place of the extensive total volume.

There are, apparently, nine coefficients of homogeneous displacement

in a rigid body. Consider a rigid body, with no outer forces acting on it,

and a Cartesian coordinate system drawn from some point in the body as

origin. If the body is subject to some stress, that is to some force tend-

ing to distort it, a point in the body formerly at the position x,y,z will

be displaced to a new position x + Ax, y + Ay, yi + Az. Keeping the

origin fixed, the displacement is said to be homogeneous if the displace-

ments Ax, Ay, Az are linearly proportional to the distances x, y, z from
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the origin:

Ax ^ XgX + y^y +
(11. 44) Ay * XyX + y^y + 2^2,

A2 = x,x + y*y + ^z^•

The nine coefficients x*, • • • z*, determine the type of displacement.

Now a displacement for which y* = — z^ corresponds to a pure rota-

tion about the x axis, and is not resisted by a restoring force. Similarly,

displacements with x^ = —z^orXy = —y, correspond to rotations about

the y and z axes. Instead of describing the displacement by the nine

coefficients x*, x„, etc., one might use x*, y^, z,, and J(y*+ Zy), ^(y, — Zy),

^(Zx + Xa), i(2, - Xa), ^ (Xy + y,), i(Xy - y*). The three coefficients

|(y* — Zv)i 5 (Zx X*), |(Xy — y*) determine the amount of rotation

about the three axes, x, y, and z, and the energy does not depend on

these coefficients.

The strain in the body, then, depends only on sfx (‘.ocfficicnts, x,, yy,

+ Zv), i(z» + Xa), Kxy + yx). Instead of writing ^(y, + Zy)

it is sufficient to treat only displacements for which ya = Zy, ^ (ya — Zy)

= 0, etc., that is displacements for which the rotation is zero.

A homogeneous strain in the body may then be described by the six

coefficients: x*, yy, z*, ya, z*, Xy, it being understood that always

y« ~ Zy, Zx = Xa, Xy = yx*

The total thermodynamic work function A, of a crystal, is the sum of

the potential energy f/, at absolute zero, and of the expression — In Q,
given by (5), or by equation (42) if the Debye approximation is used.

The potential energy f7 at T = 0 depends on the six strain coefficients,

Xx, ' * ‘ Xy, and may be calculated from the sum of the mutual potentials

between .the molecules when they are at the lattice positions of the

strained lattice. The frequencies Vi entering (5) ,
or the maximum Debye

frequency Vm (or 6 = hvm/k) in (42) arc also to be calculated from the

forces acting on the molecules in the strained lattice. Thus both U and
the frequencie.s are functions of these strains, which determine the shape

and volume of the crystal. The frequencies v, do not depend explicitly

on temperature, but do depend on the strains.

One may, then, in principle at least, arrive at an equation for the work
function A as a function of T, Xx, yy, z„ y*, Zx, and Xy. The .stress tensor

components, A"x, Ty, • • • -Yy, are the forces

(11. 45)
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resisting the strain displacements. A must be taken, in (45), as the

work function yer unit volume. At T = 0, A = 17, and equation (45)

is most commonly met with the total potential energy per unit volume U,

replacing A.

The Hooke’s law assumption is that these stresses are proportional to

the strains

— Xx = ciiZx + Ci2yy + ciaZj + cu y, + cis Zx + Cie Xy,

-- Yy — C2lXx + C22Yy + ‘ * *

— Xy = CftiX, + • * * +

One can show that necessarily

Ckk' = Ck'k

so that there are only 21 elastic constants instead of the 36 seemingly

appearing in the above equation.

For a regular (cubic) crystal, with all three axes equivalent, only three

independent elastic constants,

Cll, Ci2, C44,

remain.

For a more compU^te discussion of this classical theory of elasticity the

reader is referred to various books in which the subject is treated more
exhaustively.*

It is, of course, necessary to use some approximations in order to

arrive at the equation for the work function A in terms of the strain

tensor. Herzfeld and Goeppert Mayerf have used the Debye approxi-

mation, as has Brillouin.J Bom§ has carried out this method rather

completely, calculating directly the expression for the product of all

frequencies, which, at high temperatures, is sufficient to determine In Q,
equation (7).

If the work function A is accurately given as a function of temperature

and the six strain components, it is possible to set certain outer limits on

the range of stability of the crystal.

For instance, no stable thermod3mamic system could have an equation

of state such that the pressure increased with volume. The coefficient

— {dP/dV) T must always be positive. In general, at low temperatures

* For instance, see M. Born, Atomlheorie deafeaten Zuatandea, Leipzig, 1923.

t K. Herzfeld and M. Goeppert Mayer, Phya. Rev., 46, 995 (1934).

t L. Brillouin, Phya. Rev.t 64, 916 (1938).

I M. Bom, J. Chem. Phya., 7, 591 (1939).
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and high pressures, this is the case. If, however, this quantity is calcu-

lated as a function of P and T, one will find a line in the P— T diagram

for which dP/dV becomes zero and is negative for higher temperatures

and lower pressures. Herzfeld and (ioeppert Mayer have assumed that

this line gives the melting cur\'e, and the numerical agreement is as good

as could be wished. It is found, for instance, in agreement with experi-

ment, that crystal helium should not be stable at zero pressure, even at

r = 0.

This line, at which {dP/dV)r = 0, certainly determines the upper

limit of the melting temperature, in so far as the numerical calculation is

correct. One is, of course, not ccTtain that the liquid phase does not

have a lower free energy than the crystal at lower temperatures than

those given by the line {dP/d V)t = 0. In this case one would say that

the crystal is metastable between the line for which the free energies F
of the crystal and liquid are equal and the line for which {dP/dV) 7* = 0 .

Herzfeld and Cioeppert Mayer base their assertion that the line

(dP/dV)T = 0 represents the nu^lting line upon the observed fact that

ordinary crystals cannot be superheated, from which they deduce that

no rnetastablc region (?xLsts.

Born* has emphasized that not only —{dP/dV) > 0 must be satis-

fied if the crystal is to be even metastable, but also that the crystal must

n^tain rigidity with respect to all distortions. For a regular (cubic)

crystal this requires three conditions for the three elastic constants,

C111 C12, C44, to be satisfied, instc^ad of only the one, — (dP/dF) > 0 .

Born also tries to deduce the character of the phase which is formed

upon the breakdown of any one of these conditions. He believes that

only the transition when C44 = 0 corresponds to melting into a liquid.

Numerically Herzfeld and Goeppert Mayer found C44 to be still posi-

tive when (dP/dV) t became zero.

It is not desirable to go into detail here concerning the differences in

point of view of the different wwkers. It is at least apjmrent that,

within certain limits upon the accuracies with which numerical calcula-

tions can be made, the limits of metastability of the crj^stal can be set.

In discussing the theories concerning the limits of stability of the

crystalline phase the interesting theory of Lennard-Jones and Devon-

shire,! who attempt to determine the P— P line for which the crystal

changes into a more random type of lattice structure, should be

mentioned.

• M. Born, J, Chem, Phys,, 7, 591 (1939).

t J. E. Lennard-Jones and A. F. I^vonsliire, Pror Roy. Soc.^ A169, 317 (1939).



CHAPTER 12

THE VAN DER WAALS EQUATION

(a) Introduction, (b) The Approximate Statiatical Treatment, (c) The

Interpretation of a and b. (d) The Law of Corresponding States, (e)

Condensation and the van der Waals Equation, (f) Phase Changes and a

General Equation of State.

12a. Introduction

The perfect gas is a system in which the mutual potential energies of

the molecules may be neglected owing to the large average distancei^

between them. If a real gas is compressed, deviations from the perfect

gas equation of state, PV * RT, are observed, and these deviations are

due to the increasing importance of the forces between the molecules as

the distances between them are decreased.

A very simple semi-empirical equation of state, which gives a sur-

prisingly good approximation to the observed P—V relationship, even

down to the volume of the condensed phase, is the van der Waals

equation,

(12 . 1 ) +

For relatively low pres.sures and large volumes this equation may be

developed as

N^a
PV = NkT --— + NbP + -

-

,

V

which, with the substitution of P = NkT/V as a zeroth-order approxi-

mation for the pressure, gives the beginning of the expansion of PF as a

power series in 1/F to be

(12.2) /T .«T[l + p(6-j^) + '

-]

Equation (2) may be derived theoretically by the use of certain

reasonable approximations, giving a means of evaluating the two con-

stants a and b in terms of parameters occurring in the equation for the

mutual potential of two molecules. The derivation which follows is

used frequently and gives the correct result, although it does so by the
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accident of two compensating errors. The correct derivation was first

given by Ursell,* and an exact method, similar to his, will be discussed

fully in the next chapter. The incorrect method will be used here

because of its simplicity and because it is sufficiently similar to the exact

method to form a usefully instructive introduction to it.

12b. The Approximate Statistical Treatment

A gas composed of N identical molecules in a volume V will be con-

sidered. Since the essential features of an imperfect gas are observed in

the noble monatomic gases as well as in the more complicated poly-

atomic gases, it will be simpler to choose a monatomic one as an example,

and to assume that the molecules treated have no excited internal degrees

of freedom. Since, further, the behavior of the imperfect gas is not due

to quantized energy levels, but occurs at temperatures and volumes, in

the heavier gases at least, for which the classical equations are valid, we
shall use the classical integration methods throughout.

The 3iV Cartesian coordinates of the molecules, and their conjugated

momenta, will be used. The indices i and j as subscripts will indicate

the molecules i and j. The Hamiltonian contains the sum of ZN kinetic

energy terms The additional potential-energy terms, functions

of the coordinates alone, will be responsible for the difference between

the equations derived and those of the perfect gas. The phase integral Q
may be integrated at once over the SN momenta from minus to plus

infinity, leading to

which is the simplified form of equation (10. 32) for systems of one kind

of molecule only. The configuration integral Q, is

(12. 4) ^r=ff f . . . dr* . . . dr^,

with

(12. 5) du = dxt dyi dzi,

and U {q) is the potential energy of the system.

The potential energy, U(g), will be assumed to have certain simplified

characteristics, which are probably almost exactly obeyed in almost all

real gases composed of chemically saturated molecules. It will first be

assumed that U (g) can be written as a sum of terms, each depending

only on the distance apart rij of two molecules i and j. This assumes

* Ureell, Proc. Cambridffe PhU, Soc,, 28, 685 (1927).
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that the potential of three molecules, all close together, is the same as

that of three independent pairs of molecules having the same distances

apart as the three pairs which can be formed of the group of three. In

the system of N molecules there are (JV — 1 ) different pairs which

can be formed, so that this assumption is that U(q) is the sum of

^NiN — 1) terms, namely,

(12. 6) U{q) = S Z
i>J i-1

where u{rij) is the potential encjrgy of the pair of molecules i and j as a

function of their distance apart uj.

The function w(r) has the same general characteristic form for all

neutral, chemicall}^ saturated moleeuU«. It is zero for large values of

the argument r, decreasing to a minimum negative value at a distance

r of a few Angstrom units, and then increasing rapidly, as r decreases, to

very high positive values for smaller distances of approach. Later it

will be necessary to make more special assumptions about this potential

in order to arrive at equation (2). For the present it will be desirable to

assume only that u(r) approaches zero for large values of r more rapidly

than the inverse third power of the distance.

With (6) for U(q) the exponent of the integrand in (4) for is a

sum of terms. The integrand itself is then a product. However, the

coordinates of tw'O molecules occur in each term of the product, and the

coordinates of each molecule occur in iV — 1 different terms of the

product. The complete integml is not to be written as a product of inte-

grals as were the momenta integrals. One may write

(12.7) n
N>i>j>l

Each term becomes unity for large values of the argument

Tij, for which w(r,j) is zero, so that it is convenient to define a

function,

(12. 8) f(rij) = fij =

which becomes zero for large values of r.y. Since

equation (7) may be written as,

(12. 9) e-^iQ)lkT = n (1 +/«).
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This product may be expanded into a sum of terms,

(12. 10) = 1 + E /« + + • •
•

,

N>i>3>l

in which each term becomes zero if the argument r*-,- is large for any pair

ij occurring as a function /ty in the term.

The complete development of this equation will be considered in the

next two chapters. For the present the unjustifiable assumption will

be made that the contribution to the integral of the unity, and the

^N{N — 1) terms containing only one/ty, need be considered, and that

all the other terms may be neglected. Using (10) in (4), with this

assumption, one obtains

(12 . 11 )

Qr = ff-
••/*["!+ E /»y + • • -1 dri • • dry • • • dri • • • drjy.

JJ J L N>i>j>l J

The integration over the unity leads to a factor V for each molecule,

since the configuration space allowed to each molecule is the volume of

the system. The product of these factors for all N molecules is

If u(r) were identically zero for all r\ then all the/»y's would be zero

and this term alone would be present. This value, for Q,, gives the

perfect gas equation for the pressure (see equation 10, 54).

The integration over each of the ^N(N — 1) different /,y^s gives the

same value. For each such term, containing one 1*39 integration over

the configuration space of a molecule other than i or j leads to F as a fac-

tor. There are N — 2 such molecules, so that the term is

Now fij drops rapidly to zero as Vij becomes large, so that, if the position

of i does not happen to be within molecular distance of the walls of the

vessel,

(12. 12) Jfij dtj =J /(r)4irr^ dr = /S,

since drj can be expressed in spherical coordinates with molecule i as

a center, and the integration over the angles performed. The integral

P has the dimensions of volume. P is independent of the position of

molecule f, at least to within a few Angstroms of the wall, so that
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There are (AT — 1) such terms, and ranee N is very large this is

practically One may write

Q, = v^(i+lAr*|),

or

(12.13) = N^t/'(l+^N^y

with the introduction of the volume per molecule, v,

(12.14)

In taking the logarithm of Q^, the unjustifiable assumption is made
that ^Nff/v is small compared to unity,* so that In (1 + ^Nfi/v) =

.

hm«,

(12.15) InQ, = JvFlnJV + lnr + l-l-

The pressure P is — (dA/dV) r, and since A is —kT In Q, the product

PV is kT{d In Q/d In V) t- The only volume-dependent factor of the

phase integral Q is the configuration integral Q„ so that

(12. 16) = kT /alnQA
\ d In V /T*

which is the same as equation (10. 54). Applying this to (15), one

obtains

(12. 17)

12c. The Interpretation of a and b

Equation (17) .shows merely that the pressure P can be developed in

terms of a power series in t>~^. However, the constant is defined by

(12) and (8) as

(12. 18) |3 = 4t - 1) dr
Jo

* The correction term appearing in the final equation is i/3/v, so that if this term

is appreciable compared to unity the term iNfi/v is certainly not small. Actually

if the higher products of the sum (10) are taken into account Qr may be shown to

approach 7^(1 + i/3/v)^, and (13 ) is only made up of the first two terms in the

expansion of this power. This equation Imuis directly to (15 ), which is the correct

approximation to In Q, to within terms of the order of
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in terms of the potential u(r) between two molecules. The development

(2) of the van der Waals equation gives /9 as a function of the tempera-

ture, namely, by comparison of (2) with (17), that

(12. 19)

This functional relationship of /3 on temperature depends on a particular

form for the potential u(r), and it \wll now be shoi^m what form leads to

this equation, (19).

The necessary and sufficient condition for (19) is that u{r) should be

positive and extremely large compared to kT for some range of the vari-

able r, and that for all other values of r its absolute magnitude should be

much smaller than kT. When u(r) is plus infinity the integrand of

(18) is independent of T, since
^{j)ikT

jg aero. The integral Piotofii(r), of equation (20),
against for ta“o

over this range of r gives rise

to the negative and temperature

independent part, —6, in (19).

When
1
w(r) \<^kT the expo-

nential may be devel-

oped as 1 — u{r)/kTf and for

this range of r values the in-

tegrand is —u(r)/kTj which is

inversely proportional to T.

The simplest equation which

satisfies these conditions is also

a rather close approximation to

the potential curve for real

molecules, and is

(12. 20) u(r) = GO
,
0 < r < To,

«(»•) = -«o >

To < r < 00 .

This potential, with the corre-

sponding fix) for uo/kT = J,

which corresponds to a tem-

perature approximately twice the critical temperature, is plotted in

Fig. 12. l,form = 6.

The molecules obeying this potential law behave like hard spheres of

Plot of for
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radius (uid volume

repelling each other infinitely when their centers are a distance Vq apart.

For distances greater than tq they attract each other, having a minimum
negative mutual potential of — uq at r == tq. It is assumed that uq kTy

although the subsequent method of evaluating p is not greatly in error

for values of Va as great as ^kT. The value of m which would most
closely approximate the true potential curve for most molecules is about

six.

For values of r between zero and Tq the exponential is zero and b may
be defined as,

(12. 22) b == i f dr = ^ Tq = 4i;o.

•^0 «

For r values between vq and infinity

g-u(r)/*r _
kT

and a may be defined as,

(12. 23) a = f f dr

12

m — 3

*0

UqVo.

2ir

m — Z
uor'o

By insertion of these values into (18), equation (19) is seen to be in-

deed fulfilled.

The van der Waals constant b is four times the volume vq of the mole-

cules. The constant a is proportional to the volume of the molecules

and to the minimum potential uq, with a proportionality constant

dependent on the shape of the attractive potential determined by m.

As is to be expected, for real gases both b and a are found actually to be

somewhat temperature dependent.

It is to be emphasized that, even with the assumptions made, only the

approximate equation (2), and not the van der Waals equation (1), has

been derived. Equation (1) is certainly not exactly obeyed by any

experimental system. Its original derivation by van der Waals,

although based on extremely ingenious reasoning, was not deduced

from statistical methods. Indeed, an equation of the van der Waals

type showing an unstable region will not be obtained by direct statistical

calculations. This will be discussed further in section 12f

.
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The quantity kTfff2, equation (17), which is the coefficient v~^ in the

development of the pressure as an inverse power series in the volume, is

known as the second virial coefficient. (The first virial coefficient is

just fcr.) The second virial coefficient for different gases at various

temperatures has been the subject of many experimental investiga-

tions. From a knowledge of its values, then, the potential, w(r), between

molecule pairs which reproduces the experimental values of when used

in equation (18) can be determined. Lennard-Jones, particularly, has

undertaken such determinations, and finds that, if the potential is

written in the form

“(»•) = - p; .
rn<n,

n is about 1 1 to 13, and m about 6. This is the best source of our experi-

mental knowledge of the forces between chemically saturated molecules.

Fig. 12. 2. van der Waal’s equation. Plot of P/Pe against v/vc for various values of

p ^ scT/n) ^ .

Pc ^(v/Vc) “ 1 \v/Vcf

12d. The Law of Corresponding States

The van der Waals equation is cubic in the volume, and by the multi-

plication of (1) with V^/PN^ it may be brought into the form

(12. 24) «« - + 6^ + I
„ - » 0.

If P is plotted against v at constant T, see Fig. 12. 2, the curve rises
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with decreasing volume from P = 0 at infinite volume, to P « « at

V ^ b. At high temperatures the rise is monotonous, that is,

(dP/dv) 7* < 0 for all volumes. At lower temperatures the curve has a

loop, and for a range of the pressure P there are three real positive

volumes which are solutions of (24). There exists one temperature,

Tej the critical temperature, such that all curves of higher temperatures

are monotonous, and all curves of lower temperatures have a loop. As
one point, Pc and Wci the curve at the critical temperature is horizontal,

{dP/dv)T = 0, and at this one point, which is the critical point, the

three roots for v of (24) are identical and real. (For T > Te&t all P's

there are only one real and two imaginary roots of equation (24) for v.)

It follows that for T — Te and P = Pc equation (24) must be a perfect

cube, of the form

(12, 25) (v — Wc)^ = v® — 3veV^ + 3vcV — = 0.

By equating the coefficients of (24) and (25),

3t^c

the constants a and b can be obtained in terms of the critical volume

per molecule and the critical pressure Pc- One obtains

(12. 26)

The equation

(12. 27)

6 = ^*, o = 3P,p*.
O

, _ 8 PeVr PeVe _ 3
‘ “ 3 jfc

’ kTc~ 8’

is also obtained; the pressure volume product at the critical point is

I the value of that of a perfect gas at the same temperature. This is

not very far from the observed value of about 0,3.

Use of the values (26) for a and b in equation (1), with the intro-

duction of (27) for Te, enables us to express the van der Waals equation

in the reduced form

(12. 28)
3 r/

in which the ratios of volume, pressure, and temperature to the values

at the critical point appear, and all constants of the equation are uni-

versal and independent of the particular gas.

Equation (28) is a special case of the law of corresponding states,

which predicts that the equations of state of all normal " substances
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are the same, if the volumes, pressures, and temperatures are always

expressed in terms of the volumes, pressures, and temperatures, respec-

tively, of some unique point in the equation, such as the critical point.

The law of corresponding states follows rigorously from certain assump-

tions concerning the mutual potential of pairs of molecules. The true

form of the potential w(r) between two molecules may be approxi-

mated rather accurately by the equation

«(>)= m<n,

which can be transformed into

(12.29)
Ln — m\r /

This equation has a minimum value — i/o at r = ro. In the preceding

section, equation (20) was essentially of this form with = oo, and

m left undetermined.

If, in the configuration integral (4), a transformation of coordinates

to new dimensionless variables = ar,/ro is made, then

dti = 7^ dqy^ dq,^.

The new limits of integration will depend only on the ratio of the vol-

ume V of the system to Tq, or, if we prefer, to == irro/6. The inte-

grand is a function of uq/AjT, and does not contain either % or T in any

other form.

If now it is assumed that for all molecules the numerical values of

the constants n and m are identical, the law of corresponding states

follows. With two systems of different kinds of molecules, but having

the same number of them, JV, and with the same value of V'/wo and Mo/fcT,

the configuration integrals of the two systems will differ only by a factor

of Vq for the two kinds of molecules. This factor is independent of the

temperature or volume. That is, one may write, for all systems with

the same values of n and m,

(12.30)

where F is a universal function dependent only on n and rn for its form.

The quantities vq and wo, with the dime^nsions of volume and energy,

respectively, vary from molecule to molecule.

The pressure P is (equation 10. 53'),

/a In QA ^ kT/ dlnF

\ dV A Vo Mo \d (V/vo)
(12. 31)
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If the scale of volume is measured in units of i»o, the scale of temper-

ature in terms of Wo/fc, and that of pressure in Wo/j^Oi the equation of

state of all systems composed of molecules for which the mutual poten-

tial is given by (29) with the same values of n and m will be identical.

This conclusion is based on the use of the integral form (equation

10. 50') for the translational part of the complete partition function of

the system. If the teinj^erature is low, and the masses of the mole-

cules small, so that the quantum-mechanical sum (equation 10. 50)

must be used, corrections will enter which depend on the absolute values

of T and V. The law of corresponding states will not apply.
,

We have explicitly limited the calculations of this chapter to mona-

tomic gases for wdiich the number of degrees of freedom per molecule

is three. For diatomic and polyatomic gases there will be additional

internal degrees of freedom for every molecule. If, however, the mutual

potential energy of a pair of molecules is given by equation (29) inde-

pendentl}' of the internal quantum state of the molecules, which means

that the Hamiltonian is s<'{)arable in the translational and internal

coordinates, the conclusions of the prectiding sections will be equally

valid. I'he internal degrees of freedom, then, will only contribute an

additional factor to the partition function Q, which will not be volume

dependent, so that the (‘(juation for the pressure will remain unchanged.

It appears that for nori-polar molecules one may assume witb moderate

accurac}^ that the attractive potential Is inversely proportional to the

sixth power of the distance, that is, that 7n = 0. The equation of state

at high volumes depc^nds It'ss oii //. Probably n == 12 is a fair average

value for the repulsive power. For non-jiolar molecules the law of

corre.sponding states holds fairly satisfactorilj", even in comparing

monatomic gases wdth polyatomic gases such as methane.

Strongly polar molecuh’s, such as water, obey decidedly different

equations of state from thos(i obeyed by non-polar molecules.

12e. Condensation and the van der Waals Equation

The isothermals, or plots of pressure against volume, for various

constant temperatures, from the van der Waals equation, are shown in

Fig. 12. 2. The units chosen are the critical values, so that the critical

point is 1, 1 on the diagram.

For temperatures lower than the critical, T/Te < 1, the isothermals

show a loop, that is, for a region of volume the quantity {dP/dV)T is

positive. It is obvious that the curve in this range, where the pres-

sure increases with increasing volume, does not correspond to any phase

which can exist in nature.

On the diagram, horizontal lines, of constant pressure, are drawn to
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connect the volumes at the same pressure which are on the two branches

of the curve for which (dP/dV) t is negative. The lines are so drawn

that the area between the horizontal and the van der Waals curve above

it is equal to the area between the horizontal and the portion of the

curve below it. The two end points on the van der Waals curve con-

nected by the horizontal then correspond to two phases of the system

having the same free energy F and therefore being in equilibrium with

each other.

This statement is seen from the equation

The integral is exactly the difference of the two shaded areas, that above

the horizontal minus that below it.

The two phases are the liquid and the gaseous. Since their free

energies are equal at the pressure of the horizontal line the two phases

are in equilibrium at this pressure P,, the vapor pressure of the liquid.

At a lower pressure P than P, the condensed phase has a higher free

energy than the gaseous at the same pressure P, since from (32), owing

to its smaller volume, its free energy decreases with pressure decrease

less rapidly than that of the gas. Conversely, at higher pressures than

P, the liquid has the lower free energy and is the single stable phase.

The van der Waals isothermals in the region for which {dP/dV)T is

still negative, but in the volume range of condensation, for which the

phases they represent are unstable, have a physical significance. The
liquid may be maintained under a pressure less than its vapor pressure,

or even by tension under a negative pressure, at least temporarily.

The gas may also be obtained temporarily in the supersaturated state

with the pressure higher than the vapor pressure.

Whether the region of the curve for which {dP/dV) t is positive can

have any physical significance whatsoever is doubtful. It is supposed

to represent the pressure of the material inhibited to the uniform density

corresponding to the inverse volume of the system. In this region, as

in any portion of the curve between the volume of the saturated vapor

and that of the liquid, the lowest free energy, and therefore the stable

configuration, is obtained if the material separates into two phases of

different densities. Where {dP/dV)T is negative, this separation

requires first the transition of microscopic portions of the system through

still less stable regions, and the separation into two phases may require

appreciable time. The unstable regions for which (dP/dV)T is less

than zero may be called metastable. Where this quantity is positive,

however, immediate separation into two phases is required, since no
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les» stable microscopic configuration separates the thermodynamic
equilibrium from the region of uniform density.

Any continuous single equation of state, such as that of van der Waals,

which pretends to express the P— V relationship of two or more phases,

has necessarily these characteristics of predicting the existence of

unstable transition regions, both those which may be metastable as

well as those which are entirely unstable. The stable phases may
always be determined by calculation of the points of equal free energy

at the same pressure, on the diagram.

The significance of this in terms of the general statistical method
will be discussed in the next section.

12f . Phase Changes and a General Equation of State

A knowledge of the functional dependence on V and T of the con-,

figuration integral Q,, (4), the volume-dependent factor of the phase

integral Q, is sufficient to determine the equation of state of any system

obeying the classical mechanical equations.

If the integration indicated in (4) is extended over the complete

configuration space of the whole system the resulting equation for the

pressure P will give the equilibrium pressure of the system as a function

of V and T. If at some volume and temperature the equilibrium con-

figuration of the system is one for which it exists in two phases, say

liquid and gaseous, the integral will lead to the equilibrium pressure

between these phases. The integral itself will then have its greatest

contribution from that part of the configuration space which corre-

sponds to the existence of the two phases.

For instance, the volume and temperature may be such that in equi-

librium half of the molecules of the system are in the gaseous phase and

half in the liquid. Then the main contribution to the configuration

integral will come from that portion of the space for which half of the

molecules are far apart from others and half of them are close together.

If the condensed phase in equilibrium with the gaseous were the crys-

talline, the contribution of those molecules which were close together

would come from the regions of configuration space corresponding to the

regular arrangement of the crystal lattice. The contribution of all

other portions of the configuration space will be negligible; their frac-

tion of the whole integral gives the probability of finding the system in

a configuration other than that of thermodynamic equilibrium.

It is only by the imposition of some arbitrary limitation on the portion

of the configuration space over which the integration is extended that

the equation for an unstable or melastable phase may be obtained. For

instance, the neglect of that portion of the configuration space where
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many molecules are close together will lead to equations for the super-

saturated vapor. For this reason a complete statistical calculation

can never lead to an equation of the van der Waals type, having a loop

in the P— F curve.

In general it appears to be impossible, as yet, to perform the inte-

gration of the configuration integral over the whole configuration space

in such a way as to obtain the functional dependence of on volume

and temperature in a closed form. Two general differing methods of

approach have been made.

The first of these methods is illustrated by the calculations made in

Chapter 11 for crystals. The experimental fact that the system is

known to exist only in the neighborhood of ctM tain portions of th(^ con-

figuration space is used. The integration is then arbitrarily limited to

the neighborhood of this particular part of the space. If this is not

done explicitly it is implied by the development of the integrand of the

configuration integral in such a way that it gives the correct values only

in the neighborhood of these preferred positions.

For the crystal the method is pragmati(‘ally satisfactory, although

open to some rather academic objections. It is proved that the con-

figuration assumed is mechanically stable compared to all neighboring

configurations, that is, all small displacements lead to an increase of

energy. From this it is knowm that the assumc'd (Tystal lattice is at

least metastable W'ith respect to other configurations. Since the material

is observed to exist in a certain lattice type, the calculation gives the

correct thermodynamic functions for the experimental phase. It wull

not automatically predict any phase transitions. These must be found

by explicit calculations of the thermodynamic properties of other con-

figurations, and they should, if the calculation is to be completely

logical, include all other crystalline lattice types as well as all configura-

tions of complete disorder corresponding to the glasses and fluid phase.

The same objections apply even more cogently to most theories of

the liquid. Certain characteristics of the equilibrium configuration

are assumed, and the integration is limited to the portions of the con-

figuration space to which these characteristics apply. ITnless the inte-

gration is extended over the complete space one can never be quite cer-

tain that the phase calculated ever corresponds to the experimental

material.

The second available method of statistical calculation has certain

advantages in logic but also decided limitations. It has already been

illustrated crudely in section 12b, and an example of it will be developed

in greater detail in the two subsequent chapters.

In this method the integrand of the configuration integral is developed
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as a sum of terms, most of which differ from zero only in certain portions

of the configuration space. The terms which are negligible after inte-

gration do not affect the value of Q,, but the integration is explicitly

extended over the complete configuration space. The important terms

of the sum making up Q, give the contribution from the regions of the

configuration space in which the system actually exists.

For instance, in (10) the term \mity has the same value in all portions

of the space, but the remaining terms containing functions fij differ

from zero only in that portion of the space for which their arguments,

rij, are small. The correction terms considered were those containing

a single /«> and are non-zero only where the two molecules t and j are

close together. In section 12b the other terms were incorrectly

neglected. The correct application of the method, which will follow,

demands the explicit consideration of all the terms in the sum (10).

This method, when correctly applied, automatically includes phase

changes, since the contributions of all regions of the configuration space

are evaluated. The fundamental difficulty is that the terms corre-

sponding to the existence of the liquid cannot, as yet, be integrated in

closed form.



CHAPTER 13

THE IMPERFECT GAS

(a) Introduction, (b) The Cluster Integrals b|. (c) Simplification of

the Configuration Integral Equation, (d) llie Maximum Term in Qr/N !.

(e) The Limiting Case of the Perfect Gas. (f ) The Equation for the Cluster

Integrals in Terms of Irreducible Integrals /}«. (g ) Development in Inverse

Powers of v. (h) The Thermodynamic Properties of the Imperfect Gas.

(i) Summary of the Method.

13a. latroduction.

In this chapter the most general treatment of the imperfect gas will

be given, although some of the proofs, which in their most rigorous

form are shown in the Appendix (AX, XI) and are somewhat compli-

cated, will be shortened and rather simplified in a manner which limits

the range for which their application is rigorous. The coefficients in

the virial development of the pressure as an inverse power series of the

volume will be derived as specific integrals in the configuration space.

The first steps of the method are the same as in section 12b. A sys-

tem consisting of N identical molecules in a volume V will be considered.

The classical method will be followed throughout. It will be assumed

that the molecules have only three translational degrees of freedom,

with no internal coordinates, and that the potential energy U (q) of the

whole system can be expressed as a sum of ^N(N — 1) terms, itlr.y),

each depending only on the distance r,,- between two molecules i and j

(equation 12. fi).

It will be explicitly assumed that u(ri,), the potential between a pair

of molecules, falls to zero with increasing value of r.-y more rapidly than

The exponential which occurs in the configuration integral,

(13. 1) “ iJ '/
can be developed, by-means of the function

(13.2) /.-,= /(ro)**-'"'’'*’’-!,

into the sum

(13. 3) = 1-1- E H- ZUiiUr + • • • •

N>i>}>l

All these steps have been discussed in section 12b.

277
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13b. The Cluster Integrals b|.

The general term of the sum (3) will now be considered. It is con-

venient to make a one-to-one correspondence between the terms of this

sum, which are composed of a definite product of particular functions,

fij, and certain diagrams which may be drawn in a plane. If all the N
molecules are represented by numbered circles in a figure such as

Fig. 13. 1, and a line is drawn between the two circles i and j for eveiy

© ©—@ © @
® @ ® © © ©—

©

Fio. 13. 1. Diagram corresponding to the term in (3), /s ,2 /10.4 fbA /u js /ss.ie fn,\t

/as .17 /26. 18 /28 .27 /28 .21 /28 ,
20 /27 .20 /21 .20 - Molccules 1, 6, 7, 8, 9, 11, 12, 15, 19, 22, 24

and 25 are in single clusters of one molecule each. Molecules 2, 3; 13, 14; 18 and

26 are in clusters of two molecules each. Molecules 4, 5, 10; 16, 17 and 23 are in

clusters of three molecules each. Molecules 20, 21, 27 and 28 are in a cluster of

four molecules. For this term, mi « 12; m2 = 3; ms = 2; and 1714 * 1.

function /,y occurring in the term, then every term of the sum (3) may

be represented by one such figure, and every figure corresponds to

exactly one term of the sum.

The first term, unity, in the sum, corresponds to the figure which has

no line. The ^N{N — 1) figures which can be drawn with only one line

connecting any two of the numbered circles correspond each to one

of the ^N{N — 1) different terms containing only one fij.

The functions / approach zero for large values of their arguments

Uj (large compared to molecular distances of 10“® cm.). The con-

tribution to the configuration integral Q, of one term arises, therefore,

only from that part of the space for which all the distances represented

by a line of the figure are small. We may speak of the molecules which

are connected by lines in the figure, or functions in the term, as being

bound to each other in that term.

In any specified figure, that is, any specified product of /t/s, such as

that sketched in Fig. 13. 1, there will be groups or clusters of molecules

which are all bound to each other directly or indirectly by lines, and

not bound to any molecules which are not members of the cluster.
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Such molecules will be said to be part of a cluster, and by this criterion

every molecule of any figure may be said to be one of a cluster of a cer-

tain number of molecules.

The simplest cluster is that consisting of a single molecule, not bound
to any other, that is, its index does not occur as a subscript to any / in

the term. The number of these single clusters of one molecule each,

in any term, will be designated by mi.

The cluster of two consists of a bound pair of molecules, neither of

which is bound to any other molecule. In the term the two indices

t and j of the molecules in one cluster of two occur as subscripts to the

same /, but to no other /. The number of such clusters of two will be

called m2 .

A cluster of three specified molecules, i, j, and k, may be formed in

any of four ways:

The terms in which the same molecules are bound to each other in

clusters have in common the property that they differ from zero only

in that part of the configuration space for which the molecules in the

same cluster are close to each other. Since the larger clusters may be

formed from the same molecules in several ways, there will be a con-

siderable number of such terms. We now propose to collect these

terms together.

In any term the number of clusters of I molecules each will be desig-

nated by m|. The total number N of molecules is the sum of the num-
ber per cluster Z, times the number of clusters of this size rwi, or

i«jsr

(13. 4) JV = L Zm,.
i«i

The integrals over the molecules which are in different clusters of

one term will be independent of each other, since the clusters are so

defined that the integrand contains no functions that depend on the

coordinates of two molecules in different clusters. The integral of the

term will be a product of the integrals over the molecules in the same
cluster. We shall sum the integrals of all the products that occur when
the same Z molecules are in one cluster and designate this the cluster



280 THE IMPERFECT GAS [Sec. Ub

integral bi after multiplication by a normalization factor 1/1 \V. That
is, the cluster integral bi is defined as

(«. 5) I, -^ff- frn^
sum over all producU eon>
aietent with eingle cluster.

The dimension of bi is volume to the power f — 1. There are at least

/ - 1 /’b in the product, and at most ^1(1 — 1) /'s in any term of the
integrand of the cluster integral.

The first three cluster integrals are

(13. 6) fri = f,/rfri = 1,

(13. 7) 62 = jyf(ri2 ) dT2 '^’’1 = 4itr*/(r) dr,

(13. ^ ~ J'J'J'(hlh\+h2f31+f32f21+fa2f3lf2l)dTidT2dT3.

The first integral, 61, is identically unity. The second integral, 621 is

just half the value of the 0 used in section 12b. The first three terms

of the integral 63 will have the same numerical value since the products

differ only in the numbering on the molecules. The value of each is

actually a fact that will be discussed in greater detail in section 13f.

The value of the integral over / — 1 of the molecules is independent

of the position of the Ith, since the integrand drops rapidly to zero

for large distances between the molecules. This is true, however, only

if I has reasonable values and if the total volume of the system is of

macroscopic size, that is, if the ratio V/I is considerably larger than the

volume of a single molecule. The integral over the Zth particle, then,

leads to a factor V, which cancels the volume in the denominator of the

normalization factor. The cluster integral is consequently independent

of the volume of the system, at least as long as I is not too large or V too

small.

With this definition of the cluster integrals, the summed contribution

to the configuration integral of all the terms for which the same num-
bered molecules occur together in clusters is

n(l !r*(Kb,n.

This contribution of these terms to Q, comes only from that part of

the configuration space for which the specified molecules which are in

the same cluster are close to each other. We shall now collect all the
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identical contributions of this sort with the same numbers mi of clusters

of / molecules each. These terms have in common that they contribute

from the part of configuration space where there are mi clusters of I

molecules each close together^ but independently of which particular

numbered molecules are neighbors.

The total number of these terms which are consistent with a given

set of the numbers mj is the number of ways in which N objects can be

distributed into mi unnumbered piles of I objects each, or

.V !

Em, !(f !r^‘

The product of the two factors above gives the contribution to Q, of

all the terms in the sum (3) for which the numbers of clusters of size

/ is mi,

Nin
I

(vbir^

mi !

Ntn
1

(Nvbi)”^

mi !

in which the volume per molecule

(13. 9) V
V
N

has been introduced.

The configuration integral Q, is the sum of all these terms, the sum
over all values of mi which obey the necessary relationship (4) that

2/m| = N, namely,

(13. 10) 9i^ T
Nl r m,!

Zlmi^N

Kahn and Uhlenbeck* have shown that this equation can also be

derived by the use of the quantum-mechanical sum for the partition

function Q of the system, and is also not limited to systems for which the

potential is a sum of terms due to the pairs of molecules. The equation

for the cluster integrals 6| is then not so direct as equation (5).

It is obvious that if the interaction between molecules is independent

of their internal quantum state the assumption of no internal energy to

the molecules would be superfluous, since the Hamiltonian would be

separable, and the internal degrees of freedom would contribute a

volume-independent factor to Q of the type which we have calculated

in the chapters on the perfect gas. There is also no need to assume that

* B. Kahn and G. E. Uhlenbeck, Physica, V, 399 (1938).
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the potential between pairs of molecules depends only on their dist/ances

apart; it could depend explicitly on their mutual orientation angles

without fundjimentally affecting the applicability of the method.

13c. Simplification of the Configuration Integral Equation

Equation (10) is scarcely in a convenient form for the purposes of

calculation. It is expressed as a sum of a large number of terms, each

of w'hich is a fairly complicated product. The total number of terms in

this sum, h<)we\'ei\ is very much smaller than the total number of terms

in the sum (1^). The number of terms in (10) is the number of ways in

which X can b(‘ expressed as a sum of numbers I, if changing the order in

w'hich the /’s appear is not regarded as loading to a new' sum. This

number is called the “ partitio numerorurn ”
of and is designated by

Th<? logarithm of has been calculated* to approach the value

7r(2A'/3)^^^ for large values of X. It wall be seen later that the logar

rithms of the individual terms in the sum are proportional to N, which

means that for large values of N the values of the individual terms are

very much larger than the total number of terms.

The thermodynamic properties of the system arc all functions of only

the logaritlirn of Q^/N ! and tlie various derivatives of the logarithm.

If all the terms of the sum (10) are positive, the value of the sum QJN !

must be greater than the value of the largest term Tm of the sum, and

smaller than the product of the total number of terms Pn with the

largest term,

N !

or

O /2NV^
(13.11) Inr«<ln^<lnr„ + ir(^—

)
,

using In Pn = ir(2A^/3)*'®. Since In Tm will be found to be propor-

tional to N, the term In Pn, which is proportional to is negligible

for large values of N, and one may write

(13.12) ln^ = lnr„,N I

where Tm is the largest term of the sum (10).

This method is rigorous only if all the terms of the sum are positive,

which they will be only if all the hiS are positive. At low temperatures

this is true, but above the critical temperature some of the bf’s appear to

be negative. The equations which will be derived from (12) are identi*

cal with those which can be derived by several methods not subject to

* Hardy and Ramanujan, Proc. London Math. Soc., 16, 130 (1917).
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the limitation of positive One of these methods, originally pro-

posed by Kahn and Uhlenbeck, and modified by Bom and Fuchs,* is

given in Appendix A XI. We shall continue with the method of using

(12) but shall not limit ourselves to positive 6/’s.

The trick of substituting the logarithm of the largest term of a sum for

the logarithm of the sum has been used before in Chapter 4 to show that

the entropy of the equilibrium distribution is equal to the entropy of the

uninhibited system. In this case In (Qr/N !) is an additive part of the

work function A divided by kT, Every term of the sum (10) is actually

the additive contribution to Q^/A" ! due to a certain distribution of the

molecules in space, and the largest term is the contribution of the

equilibrium distribution. The largest term will be characterized by a

certain set of the numbers m/, the number of clusters of I molecules

each. The equilibrium distribution of the molecules which corresponds

to this term is one in which wi molecules are randomly distributed

throughout the volume of the sj^stem, m2 pairs of molecules are close to

each other in excess over the number which w'ould be expected from the

random distribution of the rni unbound molecules, and m3 clusters of

three molecules each exist in excess of the random expectation from the

given values of mi and m2 , etc.

We shall now' determine these values of m^ for the maximum term

Tm of the sum (10), and the value of In

13d. The Maximum Term in Qj/N !

From equation (10) by use of the Stirling approximation for In mj

!

the equation for the logarithm of one of the terms may be written as

(13. 13) In T = 2; m|(ln Nvbi - In m, + 1).
/-I

The values of m/ for which In T is a maximum, subject to condition (4)

that = Nj are obtained by subtracting a constant which wull be

designated —In Z times the condition (4) from (13), and differentiating

writh respect to mi. The derivative with respect to each mi must be zero

for In Tm- This condition leads to

2)^/ii(ln Nvbi — In m/ -h 1 + Z In Z) =0
dmi

= In Nvbi — In m/ + Z In Z
or

(13. 14) m, = NvbiZ^

for the maximum or equilibrium value of m|.

* Max Born and K. Fuchs, Proc. Roy, Soc,, London, A166, 391 (1938).
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The parameter Z, of dimensions & is determined by

r = 2; NvlhiTf =. N,
1-1 1-1

(13.16) 2;fo6,Z* = ].

It is seen from (14) that the fth term, Ivbi^, of this sum is the fraction

of the material in clusters of size I at equilibrium.

Substitution of (14) in (13), with (12), yields the equation for

In (Qr/N !),

(13. 16) In = In = ZNvb,Z‘(l - / In Z) = N(j:«b,Z^ - In Z),

in which Z is to be determined by equation (15).

The consequences of the thermodynamic equations derivable from the

forms (15) and (16) for In (QJN !) will be discussed in the next chapter.

In the following sections these two equations will be converted into a

more convenient form for use when the system is in the gaseous phase.

13e. The Limiting Case of the Perfect Gas
Equation (15) may be readily solved for Z as the volume becomes

very large. The first term of the sum (15), since bi = 1, is vZ. This

term alone would lead to the solution

(13. 17) Z = -
V

With this solution it is seen that the remaining terms of the sum are each

inversely proportional to the (Z — l)th power of v, so that, for large

values of v for which approaches zero, all the higher terms are

negligible. The solution (17) is the limiting value of Z as t; approaches

infinity. The first term of the sum (15) which is unity under these

conditions is the fraction of the molecules which are in clusters of one

molecule each, that is, those which are completely independent. The
largest term of the sum (10) is that for which mi = N, the term unity.

The first term of the sum, J^vbiZf^ is also unity in this case, and the

higher terms may be neglected. The equation for large values of v is

then

(13.18) In = JV(1 + In p) («-»«).
N !

From equation (10. 53') the pressure is

which is the equation of state of the perfect gas.

kT

V
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ISf. The Equation for the Cluster Integrals in Terms of Irreducible

Integrals p*
Before proceeding further it is advisable to return to a consideration

of the cluster integrals 6|, and to determine how their evaluation may be
simplified.

Equations (6) and (7) for 6i and ^2, respectively, show that no diffi-

culty is encountered in evaluating the first two members of the series.

The third cluster integral 63, (8), however, is appreciably more compli-

cated. It has already been mentioned that all the first three of the four

terms making up had the same numerical value of This can be

readily seen.

Consider the integral of the first term which is

(13. 20)
jJ/31/21

drI dT2 dt^.

The coordinates of particle 3 occur in the integrand only in/31, and only

as the distance r3i from the position of particle 1. The function /31

drops rapidly to zero as this distance becomes large, so that integration

over the space drz leads to a definite integral as a factor. This integral,

which is the same as the of section 12b, will be designated as /9i, and it

is the first of a series of irreducible integrals Pk which will be introduced.

It is

(13. 21) px = //31 X 4irr^/(r) dr^

since the volume element may be replaced by dri^.

Similarly, in this term (20), integration over ^73 leads to the factor Pu
and integration over the coordinates of the last particle, dri, gives the

factor V, The term (20) is then

(13. 22) (iti dT2 drs = Vpi.

From (7) and (21) it is seen that 62 = so that the term (20) is

just F(262)®.

All three of the first three terms of 63, equation (8), may be handled in

exactly the same manner, and lead to the same numerical values after

integration. The last term, however, has an entirely different value,

and will be used to define fi2 t
the second irreducible integral, as

J
'

J
’

J
'

/32/31/21 ^^2 ‘^’‘3 — 2V^2-(13. 23)
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With this nomenclature one obtains

(13. 24) 63 = 5^ +

In general, any single one of the terms making up the integrand of the

cluster integral 6; can be represented by a figure of I numbered circles,

with a line connecting the circles for every function fij in the term. In

order I.0 be a member of the cluster integral the figure must have every

circle connected by at least one line to other circles, and all circles must

be directly or indirectly connected by

lines. Such a figure is drawn in Fig.

13. 2, for I = 8.

If, in such a diagram, any circles

arc connected by only one line to other

circles, as 1 and 5 are in the figure

shown, integration over the coordinates

of these particlc^s in the corresponding

term gives factors for each to the total integral of the term. If two

particles, such as 7 and 8 of the figure, arc joined by a line, and both

joined to a common particle, as 4, by lines, but to no other circles, then

integration over the coordinates of these tw’o (7 and 8) contributes the

factor j32 to the integral of the term. Subsequent integration over the

other particles allows similar factoring of the integral into a product of

simpler integrals. For instance, in the figure shown, the contributions

of integration in the order indicated are as follows: integration over

dr I gives 01, over gives 0j, over dry and dr^ gives 02, over dr4 gives

01, over dT2 dr^ gives 02, and final integration over dr^ leads to the

factor V, The value of the integral over all eight particles, of the term

represented by the figure, is

?W2V.

The normalization factor in front of the integral is, from (5), 1/8 ! V,

so that the contribution to hg of this term is

In general, it will frequently happen that two groups of molecules in a
figure are singly connected, that is, they have one molecule in common,
but there are otherwise no lines between molecules of different groups.

If the coordinates of the common particle are thought of as fixed, and
the integration performed over the other particles, the integration of the

Fig. 13. 2. One term in the inte-

grand of hs
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two groups is quite independent and the integral corresponding to the

picture reduces to a product of two integrals. In this manner the inte-

gral over any figure consistent with the cluster may be analyzed into a
product of integrals over groups of particles to which this process can no
longer be applied, and which shall therefore be termed irreducible inte-

grals. In the figure corresponding, to an irreducible integral, w^hich we
shall term a frame, every circle is connected with at least two others,

except of course in ffi. The frame is said to be at least doubly con-

nected, that is, one can go from any one circle of the frame to every

other by two or more entirely independent paths of lines w^hich do not

cross at any circle.

The irreducible integral is defined as an integral over the configura-

tion space of k + 1 particles, multiplied by a normalization factor. The
normalization fac^tor is 1/k ! F. The integrand is the sum of all prod-

ucts of fi/s of k + 1 particles which cannot be further reduced into a

product of integrals. This means that in the corresponding figure all

the circles are more than singly connected.

The definition may be written as

(13. 25) ff f rn /.y rfr, • • • dTk4i.
K I V JJ J k+l>t>jf>l

All products i^faich are more
than singly connected.

The dimensions of /3k are volume to the power k.

The first three irreducible integrals are

(13. 26) l8i - ^JJ dT2 - J 4irT*/(r) dr,

(13. 27) ^2 — ^JJJ^32^31/21 dri dT2 dr-i ,

ns. 28 ) /S3 — ^JJJJ ^^^43/32/21/41 + 6/43/32/21/41/31

+ /43/32/21/41/31/42) dfi dT2 dr^ dr^.

The origin of the coefficients 3 and 6 in 183 is due to the fact that there are

respectively 3 and 6 products, differing only in the numbering of the

particles, containing the same number of functions / as these terms, and

leading to the same numerical values after integration. This can be

seen in Fig. 13. 3, which shows the ten diagrams corresponding to the

ten irreducible products which make up Pz-
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Eveiy cluster integral, 2^, may be expressed as a sum of terms, each of
which is a numerical coefficient multiplied by a product of powers of the

reduced integrals /^, for instance,

[ 2 )

(13. 29) 6i = 1

(13. 30) 62 = ifii

(13. 31) 63 ==

(13. 32) 64 = + P1P2 + ^/Sa-

if tlie power with which

occurs in a term of b| is designa-

ted by then the relationship

for all terms that

(13. 33)
k-l

must hold.

The numerical coefficients of

the term 11 in bi can be found

by inspection of the possible fig-

ures which correspond to the terms in the integrand of the cluster

integrals for small values of 1. It must be remembered that 1/k!
occurs as a factor in the definition (25) of and 1/1 ! in the defini-

tion (5) of 6|. The coefficients are found to be

1 Tk

The proof that this coefficient is general for all values of f, is given

in Appendix AX.
The equation for is then

(13. 34) 6, = S 2 n
* 'tk k

which bears a striking resemblance to equation ( 10) for Qr/N ! in terms

of the cluster integrals 6|.

13g. Development in Inverse Powers of v

Equation (15) which determines the quantity Z cannot be solved

explicitly for this parameter in a closed form. The fact that, as v

approaches infinity, the limiting value 1/v is obtmned for Z, shows that
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if Z is expanded as a power series in the volume only inverse powers

occur, that is, one may write

(13. 35) z.»j + ?| + S + 5 + .

V V*

in which we already know that Oi is unity.

If the expansion (36) is used, and the coefficients are determined in

tenns of the irreducible integrals it turns out that Z can be expressed

as a relatively simple function of these integrals 0^ and the volume v.

If this function is used, in turn, in the expression for the configuration

integral, and the various thermodynamic properties of the system

which can be derived from it, simple expansions of these functions are

obtained as inverse power series of the volume. The method of demon-
stration which will be used here is straightforward algebra, and const*-

quently, although simple, is rather tedious.

The expression (35) for Z may be used to obtain any power of Z,

-72 _ .
2«ta2

,
2a,03 + 4 ,Z—2« a"r A “T

V

I I

+ . .

. ,

up to, say, the term in This may be used in the sum (15),

J^lvbiZ^ = 1 ,
which determines Z, obtaining an inverse power series in v

which must be equated to unity. The first term, in which v does not

occur, is then 1, and the coefficients of each inverse power of v must be

zero if the equation holds for all values of v.

One then obtains

1 = Zlvbi^ = bivZ + 2b2vZ^ + SbsvZ^ + 4641’Z^
!>l

= fejOi H— (biCi2 “f" 2620?) H—2 "f* 45201^2 H” 3630?)
V

+ ^ (5 x04 + 452^ 1^3 “H 262^12 9630102 + 46401) + • ' • .

Upon equating the coefficients of the first term to unity, and of the
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others to zero,

biQi = 1, ai = ^ = 1,
t>i

bia2 + 262^1 “ 0
, 02 — “- 262 ,

bias + 462^1^2 + 36301 =0, 03 = 862 — 363,

61^4 "f* 4630103 + 26302 + 963O1O2 + 464O1 = 0,

04 = -406i + 3O6263 - 464 .

These equations give the coefficients a, in terms of the cluster inte-

grals 6|
Much simpler equations are obtained if (29) to (32) for the

bi*8 in terms of the /3**s are introduced. One finds, then, that

(13. 36) fli = 1,

(13. 37) 02 = -Pu

(13. 38) 03 = -(/82 -^i8?),

(13. 39) 04 = - (A, - 0102 +
If the function

(13.40) Z =
V

is expanded as a power series in descending powers of v, the coefficients

of the first four terms are given by (36) to (39), respectively.

For comparatively large values of the volume v, then, for which the

terms of order higher than in the expansion of Z as an inverse power

series in v may be neglected, equation (40) has been proved to give the

correct functional dependence of Z upon the volume.

That (40) is general, even for lower volumes, may be proved by insert-

ing it in (15) and expanding the exponential, using (34) for 61 . The
complicated quadruple sum which is obtained can be shown to equal

unity identically.

Equation (40) is also a consequence of the general method which is

used in Appendix A XI, as is shown there.

If the expanded form (35) for Z, with the values (36) to (39) for the

coefficients, and equations (29) to (32) for 61 to 64 are used in the sum

2i;6|Z*, which occurs in the expression (16) for In (Qr/N !), one obtains

(13. 41) = 1 - L 0^-*.

This is also shown to be general in the Appendix.
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From (40) it is seen that

(13. 42) In Z = -In V - £
kkl

The use of (41) apd (42) in (16) gives the final expanded expression for

the logarithm of the configuration integral divided byN !,

(13. 43) = at [l - 2 ft,.-* + E + In
«;]

13h. The Thermodynamic Properties of the Imperfect Gas
The logarithm of the partition function Q, or normalized phase inte-

gral of the whole system, is

(13. 44) InQ /2irmA:7’Y^/* 0,

\ A* / Nl

NM A* )
cr + L

k> 1 k + 1

from equations (10. 50^) and (43), with v the volume per molecule,

V = V/N.
The work function A, or Helmholtz free energy of the system, is, p6r

mole,

(13. 45) A = -kT In Q = ffr Tin - -Z '

L \2rmkT/ ev k>^i k -|- 1 “ J

From this equation, by means of the usual thermodynamic relations,

all the other thermodynamic properties of the system may be derived.

The first term, RT In /2irmkT)^^*^ (^)“"\ is the usual term present

in the expression for a perfect monatomic gas; the additional sum,

— Z2r2Z(k + which becomes zero for large values of the

volume per molecule v, gives the corrections due to the forces between

the molecules.

The expression for the pressure P is

kT

V

k

+ 1

(13. 46) P
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The (k + l)th virial coefficient, which is the coefficient of in this

expression for the pressure, is — fcTkft|/(k + 1), if the unit of volume
used is the volume per molecule, v = V/A^.

The pressure-volume product divided by kT, PV/kT, is, for the per-

fect gas, just the number of molecules in the system, '{'he value obtained

from (46) is

(13.47)

By comparison with (41 ) and (14) this is seen to be

(13.48) ~ ^Nj:vb,Z' = Zm,.
k 1 t>i i>i

in which mi is the number of clusters of I molecules each in the equilib-

rium distribution of the gas. It is seen that each cluster plays the same
role, in determining the pressure, that is played by one molecule of a

perfect gas, and the pressure which the system exerts on the walls of the

vessel is just the same as that of a perfect gas which has the same num-
ber of molecules as the imperfect gas has clusters in its equilibrium dis-

tribution.

The free energy F, per mole, is

(13. 49) F = A + PV . «7'[ln - Z .

Since, from (40), In Z = — In r — EiSkP"*, this can also be written

(13.50) F.liri„(—
)

z.

The perfect gas equation is the logarithmic term of (49), which differs

from (50) only in that Z replaces 1/v in the perfect gas equation. The
physical significance of Z is seen from this equation. Z is the reciprocal

of the volume per molecule, or the density in molecules per unit volume,

which the system would have at the same free energy, were it a perfect

gas.

This quantity Z is known as the fugacity; except in that the scale of

fugacity is usually so chosen that the fugacity becomes equal to the

pressure at infinite dilution, the quantity Z becomes equal to the density

in molecules per unit volume at infinite volumes.

The product Zv is then the concentration activity coefficient yc of

the system. The concentration activity coefficient is defined as the

dimensionless quantity by which the concentration of the system must
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be multiplied in order to obtain the concentration Z of a perfect gas with

the same free energy as the system, the perfect gas, of course, being

chosen with the same molecular weight and other mechanical properties

as the system so that their free energies are equal at great dilution.

From this,

and from (40),

(13. 51)

The entropy of the system per mole, S, is

/2ir»2An‘*/2„„ o /5A\
,
r, /2irtnkTY

(13.52) e,< +

and the energy is found to be

(13.53) E-A + rs.«r[2 + ri:-'-|:.-].

The heat content is the energy plus the pressure-v olume product,

(13. 54) H - E + PV - «! [5 - 2 (lA - rf)
.-]

.

The heat capacity at constant volume is obtaim^d by differentiating (53)

with respect to temperature,

- (iX
-
« ,i, kTi(s

^

The derivative of the pressure with respect to the logarithm of the

volume is found, by differentiation of (46), to be

(svkX - - - v['
-

•

The derivative of the pressure with respect to temperature is the same
as the derivative of the entropy with respect to volume, and is given by

aU ^ /dP\ ^ /dS\

dTdV ~ KdTJv
~
\ai7r

(13. 57)
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13i. Sunmiaiy of tile Method

The method of treating the imperfect gas consists of the following

succession of steps.

The integrand, of the configuration integral is expanded

into a sum of terms, each of which, except the first which is ever3rwhere

unity, differs from zero only in a limited portion of the configuration

space where some of the molecules are close to each other in clusters.

Those terms characterized by belon^g to the same distribution of

molecules in mi clusters of I molecules each, for all I values, are collected

and integrated. Each* such collection of integrated terms con^ts of a

numerical coefficient multiplied by a product of powers of cluster inte-

grals. The cluster integrals bi are integmls over the configuration space

of I particles.

The new integrated sum contains comparatively few terms, and the

logarithm of the largest may be substituted for the logarithm of the

sum. The logarithm of this largest term is the logarithm of the con-

tribution due to the equilibrium distribution of the molecules in clusters.

The use of the logarithm of the largest term for the logarithm of the

configuration integral leads to an equation for that quantity involving a

new parameter Z of the dimensions of inverse volume. The physical

significance of Z is that it represents the denaty of a perfect gas with the

same free energy as the system, the fugacity of the gas expressed in

density units of molecules per unit volume. The equation determining

Z, however, is not explicit.

This quantity Z may be expanded as an inverse power scries of the

volume. The coefficients in this expansion are not simple in terms of

the cluster integrals bt. However, the cluster int^j^s are themselves

sums of a number of terms, each of which is a numerical coefficient times

a product of powers of certain irreducible integrals of dimensions v~*.

The expansion of Z is simple in terms of these irreducible integrals

Finally, with the equation for Z in terms of an infinite series in powers

of explicit equations for all the thermodynamic properties of the gas

may be obtained in terms of inverse power series in the volume per

molecule v.



CHAPTER U

CONDENSATION AND THE CRITICAL REGION

(a) Introduetion. (b) The Value of the Cluater Integrals bt for Large Values

of I. (c) Large Quatera Present at Equilibrium, (d) The Pressure and

Free Energy in the Condensation Range, (e) The Determination of the

Volume per Molecule, «« of the Saturated Vapor, (f) The Dependence

of the Irreducible Integrals on the Temperature, (g) The Critical Point,

(h) The Temperature 7n. (i) The Phymcal Interpretation of Tm-

(j) The Thermodyimmic Functions of the Saturated Vapor, (k) Phase

Changes in the Condensed Phase. (1) The Cell Method of Calculating

Liquid Partition Functions.

14a. Introduction

The method of the preceding chapter, by which the thermodynamic

functions of the imperfect gas were found as expansions with respect to

inverse powers of the volume, was subject to two limitations which

were not fully discussed in that chapter.

The first of these limitations concerns the volume independence of

the cluster integrals The argument that the integral bi does not

depend on v is based on the fact that all terms of its integrand become

zero if any one of the molecules is far from one to which it is bound.

Since all molecules of the cluster are directly or indirectly bound in

every term, it follows that the integrand is zero if any two molecules are

widely separated. The integral over the space of all but one of the

particles is consequently independent of the petition of this last one,

provided only that it is not too close to the walls of the vessel. This

argument obviously fmls if the ratio of the total volume V to the num-

ber of molecules in the cluster is of the order of magnitude of the volume

of a tingle molecule.

For reasonably small values of I, and ordinary volumes, V/l will

obviously be far greater than the volume over which the forces from one

molecule operate effectively. But for clusters in which t is about the

value of N, the total number of molecules of the system, and small values

of the volume per molecule v » V/N, there will be some limit which will

be designated by v/, below which the 5|’s are no longer volume independ-

ent. It will later become apparent that Vj is the volume per molecule of

the condensed phase. The assumption of volume independence of all the
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6i’s will be valid for all systems of volume large enough to permit the

existence of some vapor.

The second limitation on the use of the equations of Chapter 13 con-

cerns the expansion of Z as a power series in and the analysis of the

case when this is not permissible will be the main concern of this chapter.

The expansion of Z in terms of is valid only if the sum
converges, that is, if all the terms with very large values of I in this sum
are practically zero. This is the sum, equation (13. 15), which was set

equal to unity for the determination of the parameter Z. The Ith term

of the sum, lvbiZ\ has the physical interpretation of being the fraction of

the molecules at equilibrium in clusters of I molecules each. If the mate-

rial of the system is entirely gaseous it is obvious that no very large

clusters exist, that is, none so large that a single cluster contains an ap-

preciable Jraction of all th<‘ moh^cules. The higher members of the

sum (equation 13. 15) must then be zero, and the sum converges. If

terms for which I has an extremely high order of magnitude are appreci-

able in the sum a non-negligible fraction of the system is in the

form of a condensed phase.

One explanatory remark may be advisable. The influence of the

force of gravity on the particles of the system has been entirely neglected.

Consequently, it is not to be expected that the equations will in any way
predict that the larger clusters will be located in one part of the system,

such as the bottom. Each cluster, whatever its size, will be free to

move as a whole about the complctic volume of the system.

In this chapter the value of bi for large values of I will be determined in

the form of a simple equation which is derived from equation (13. 34)

giving 6| as a function of the irreducible integrals, the /Sk’s. From this it

will be shown that the higher members of the sum £M>|Z* become

suddenly important at volumes below a definite value, v*.

This volume the volume per molecule of the saturated vapor, is

also the volume for which idP/dV)T of the gas, equation (13. 56),

becomes zero. I'^or volumes lower than v, and greater than V/, below

which the fej's are volume dependent, the two quantities pressure and

free energy are independent of the volume. Between w, and v/ the

system undergoes a change of phase, the phenomenon of condensation.

The fact that Vf is the lower volume limit of this region of constant pres-

sure and free energy identifies it with the volume of the condensed

phase.

Above a certain temperature Tc, the critical temperature, there is no

condensation range, no volume for which {dP/dV)T is zero.

The system is found to have a second characteristic temperature

Tmj which is lower than Tc- Between these two temperatures the
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region for which the pressure is independent of the volume, (dP/dV)T

is zero, the properties of the system are not those usually associated with

condensation. This critical region, which is not included in the descrip-

tion of the system derived from the van der Waals equation, has not

been generally recognized experimentally. Many of the experimental

facts, however, can best be interpreted by assuming its reality.

14b. The Value of the Cluster Integrals fr| for Large Values of I

Equation (13. 34) which gives the cluster integral 6| in terms of the

irreducible integrals ft^,

(14. 1) bt = h EH
• k

2knk-l-l
fik

!

f

is scarcely practical for the evaluation of fef if I is very large. One may,

however, employ the same method that was used in section 13d to handle

the very similar equation (13. 10) for Qr/N !.

Equation (1) expresses 6^ as a sum of terms. The total number of

these terms is the partitio numerorum of I — 1, the logarithm of which is

proportional to for large I values. The logarithm of the largest

term will be found to be proportional to 1. If all the terms are positive,

that is, if all the irreducible integrals 0^ are positive, the logarithm of the

sum of terms may be replaced by the logarithm of the largest term, at

least for great values of L For the logarithm of one term T, using the

Stirling approximation, one obtains

(14. 2) In r = L nk(ln //^ + 1 - In n^) - 2 In /,

k»l

which is to be made a maximum by variation of the values of the

subject to the condition that

k-l-l

(14. 3) D kuk * f - 1.

k>l

Multiplication of (3) by the unknown constant In p and addition to (2)

gives an expression which must be zero for the largest term if differenti-

ated with respect to any n^,

nk(ln ZjSk + 1 — In Uk + k In p) — \n 10^ — In + k\n p ^ 0,
allk

(14. 4) nfc
-

Equation (4) gives the value of for the maximum termi analogously to

equation (13. 14) for m|. The parameter p is seen to have the dimen-
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sions of inverse volume, as has Z, since has the dimensions of volume

to the power k. If (4) is used in (3) the equation determining p is found

in the same manner that that for Z was found in section 13d. Neglect-

ing the difference between I — l and I,

(14. 5) £ k^p^ = 1
k-l

is obtained. There will be only one real positive root of p to this equa-

tion as long as all /^’s are positive.

Inserting (4) in (2), and using this value of the logarithm of the

largest term as the value of the logarithm of b| for large values of I, one

finds, with omission of the negligible term In 7,

(14. 6) In 6, » In T,^ = I hp'"
- In

which is analogous to equation (13. 16) for Ln(QT/Ar !).

Equation (6) gives the limiting value of In 2)| as I approaches infinity.

This value is proportional to I, and if In bo is defined as l/I times this

lintit, that is, as

(14. 7) In bo
=

"i:
‘

/3kp‘ - In P, bo = -
k-l p

then

lim In — 7 In 6o.
l^co

For Qr/N ! the limiting value of the logarithm for large values of N
was entirely sufficient, and for the cluster integrals the limiting value of

In will also be found to be sufficient for our purposes, although the

equations which we have use the quantity 6} itself and not its logarithm.

The logarithm of hi may differ from 7 In bo by an additive function

hi /(7,i8) which depends on both the value of 7 and the values of the

irreducible integrals, We have shown that the quantity In fdfi) is

small compared to 7, that is, that

(14. 8) lim 7ln/(7,j8) = 0,
l-^oo I

but, of course, the condition (8) still allows /(f,/?) to be a factor of hi

which differs considerably from unity. By the introduction of this

fimction,/(7,0), which need not be a continuous analytical function of 7,

and presumably is not for small values of 7 at least, one may write as an

exact equation for b|, for all 7 values,

(14.9) b,=/(/,/J)bi.
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Equation (9) really defines the function but the one condition of

this function, namely, that of equation (8), will be all that we shall need.

Actually by the method of steepest descents,* or by a method of quadratures,

f

the function /(f,/9) can be shown to be

for large values of Z, as long as the sum ]I^k‘/9]cP^ converges. This information

is entirely unnecessary for the purposes of this chapter.

The method of using the logarithm of the largest term for the logarithm

of the sum is rigorous only if all the irreducible integrals Pt positive.

In Appendix A XI it is shown that equations (7) and (9) are actually

valid wherever (5) has a positive real solution for p. The smallest

positive real root of (5) is always the correct one.

14c. Large Clusters Present at Equilibrium

With equation (8) for 6|, equation (13. 5), determining Z, may be

written

(14. 10) 'if lvbt2l‘ ='if to/(f,d) (6oZ)' 1,
I-l /-I

or

(14. 11) E vm {bozy =

These sums contain a finite although very large number of terms, the

value of / running from unity to JV, the total number of molecules. The
Zth term of (10), IvbiZ^, is the fraction of the molecules in clusters of

size Z.

The value of calculated from (11) for different values of the param-

eter Z is plotted against this quantity in Fig. 14. 1, for some arbitrary

temperature below the critical temperature, for which all the 6|*s are

positive. For Z = 0 the value of is zero, » = <» . The first term of

the sum (11) is just Z, since bi is unity, equation (13. 29), and for

sufficiently small values of Z all other terms may be neglected, so that

the curve starts out at small Z values with a 45® slope, Z = a fact

which has already been discussed in section 13e. With increasing Z the

higher terms, which are all positive, begin to become important, and

increases more rapidly than Z.

Until the point Z = 6o^i boZ = 1, the highest terms of the sum (11)

* Max Born and K. Fuchs, Proc, Roy. Soe., London, A166, 391 (1938).

t J. £. Mayer and S. F. Harrison, J, Chm, Pkys., 6, 87 (1938).
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do not contribute to the value of the sum, but above this value of Z
they become enormous, and the curve increases practically vertically.

This is a consequence of the limitation (8) on In /(/,j8), namely, that this

quantity divided by I approaches zero

for sufficiently large values of I,

To show this let us consider the last

term of the sum (11) for which I ^ N,
If h^Z has the value

then when c is zero 5oZ = 1, when c is

negative it is smaller than unity, and
when € is positive it is larger than unity.

The logarithm of the last term, Tjv, of

(11) is

Fig. 14. 1. Plot of In Tjv = In iV + In f(N,p) + Nt.

N
v-i = 22 lfil,fi){hoZ)^ against Z. Now In AT is a comparatively small

quantity; it is only about 54 for

N = 10^®; the condition (8) for ln/(l,/3) requires that In (N^P) be much
smaller than Nf so that the term Ne is the most important part of In Tj^r.

If €, then, is negative, In Tn is negative and the last term of the sum

(11) is very small; but if c is positive the logarithm of the term is posi-

tive and the term is large. With N = 10^®, for an increase in e by an

amount 10“^®, Nt and In T/^ increase by 10^^, which means that the

contribution of the last term to the sum (11) increases by almost 10^®'*

fold. As soon as the last term of this sum becomes appreciable, which

it does at Z = 6o, < = 0, the increase in the value of the sum for very

small increase in Z is enormous.

The volume per molecule when boZ = 1 will be designated by r, and

will be shown to be the volume per molecule of the saturated vapor.

It is determined by the equation

(14. 12)
1-1

This sum (12) actually converges, so that is not zero, as will become

evident from an alternate equation, (23), for which will be developed

in the next section.

If the series (11) were an infinite series, that is, had an infinite num-

ber of terms instead of terminating at the term I — N, the point Z = &o
^

would be a point of irregularity of the series. It is a finite sum, how-

ever, but the value of the sum increases so rapidly with Z when Zbo is
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just greater than unity that one may say conversely that, for all given

values of the sum, greater than the solution for Z is 6© ^ This,

however, is true only as long as 6
|
is volume independent for all Z’s, that

is, true only down to v/. We may write

(14. 13) boZ =1 (v/ < V < Vf),

or from (7) for bo,

(14. 14) In Z = In p — 2 0'/ ^ ^ ^ v«)*
k>l

However, although Z and all small powers of Z may be regarded as

constant in the volume range between t*. and v/, the power Z*, when I is

approximately N, is not constant. It is just the increase in these

values w^hich accounts for the increase in the sum ( 1

1

) as increases

from rf' to The higher terms of the sum ( 10), which give the

fraction of material in large clusters, increase in value as the volume
decreases from r* to v/. The terms of the smaller clusters decrease

linearly with v in this range. The fraction of molecules in small clusters

is proportional to the vohiimj for volumes between r, and v/; the den-

sity, or number per unit volume, of these small clusters remains constant.

The fraction of material in large clusters is proportional to (r, — v)/vg

in this volume range.

At the volume 17 ,
the volume of the condensed phase, the density of

the small clusters has the same value that it has at Vg, where the system

consists only of the .saturated vapor. We may interpret this as meaning

that the solubility of the saturated vapor, measured in volume units,

in the condensed phase, is unity. The vapor pressure of the condensed

phase is due to the kinetic collisions of these small clusters with the

walls of the vessel. The increastxl pressure, as the volume is reduced

below Vf, is due to the volume dependence of the cluster integrals 6|.

14d. The Pressure and Free Energy in the Condensation Range
We shall now prove that between the two volumes Vg and v/, where

Z is constant, the pressure P and free energy F A + PV are both

independent of the volume. This is the thermodynamic criterion for a

volume region in w-hich the material is changing from one phase into

another.

Equation (13. 16) for the logarithm of the configuration integral in

terms of the cluster integrals

(14. 15) In = NCLvb,2^ - In Z),
A/ I

is applicable at all volumes per molecule v.
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We shall limit ourselves to volumes greater than v/, for which the

cluster int^prals bi do not depend on the volume, and calculate the pres-

sure P from equation (10. 53') as

P

P

kT

V

/dhi{QJN\)\ A;r/ain(Q./An)
'

\ dV /t N\ dv

Since Z is so determined that ^IvbiZ^ - 1, the equation becomes

kT kT
(14. 16) ^ " T ^ T
This equation has already been proved to hold in the region where the

system is completely gaseous, equation (13. 48), by differentiation of

the expanded form of In {QJN !).

The pressure is kT/V times the total number of clusters, since each

term, Nvbi^, in the sum of (16) is the number of clusters of size I in the

equilibrium distribution, equation (13. 14). Although the fraction of

material in the large clusters may be appreciable, their total number
must be negligible, and since each contributes only as much to the pres*

sure as a single free molecule, the contribution to the pressure of the

very large clusters may be neglected. The number of small clusters,

of which there are very many, is just proportional to the volume, in the

condensation range between and v/, so that the pressure, number of

clusters divided by the volume, remains constant in this range.

Expressed mathematically, (16) may be differentiated

(,4.I7)K(|f)
\dV/T ^ \dbiv/T V \dlnw/7

(dlnZ/dlnv)r may be determined by the condition that the sum
j:ivbiZ^ is constant.

1
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Using (18) in (17) pves

(14. 19)
\dV/T V '£Pvb,Z‘'

In the volume range between r, and v; the sum "^IvbtZ^ contains

terms of extremely large I values with magnitudes which are not negli-

gible compared to unity. In the sum Pvbi^ these terms are Z-fold

greater than in fob{Z^.

Even one cluster of very small, but macroscopic magnitude, in the

system, say one containing as little as a milligram of material, has

about KT*® mole or 10^® molecules in it. The fraction of material,

IvbiZf, in such a cluster, if the system contains a mole, is only 10“®, but
since I = 10^®, the corresponding term IhbfZ^ is 10^®.

In the condensation range, between Vg and v/, the sum ^l^vb^Z^ in the

denominator of (19) is enormous, and the quantity V{dP/dV)T is

essentially zero.

The free energy F is calculated from A + l^V, using A = — kT In Q,
The complete normalized phase integral Q is

^ /2irmkTV^^^ Q,

from equation (10. 50'), so that, with (15), the work function A per

mole is

(14.20) +

Adding to this PV from (16),

(

1,2 \3/2

The complete volume dependence of F is in the term Z, which has

been shown to have the value 6© ^ throughout the condensation range

from Vg to Vf. F is independent of the volume in the region of con-

densation.

14e. The Determination of the Volume per Molecule, of the Satu-

rated Vapor
In the previous section we have seen that there is a condensation

range between the two volumes Vg and v; where the sum J^lvb0 does

not converge. The equations of the last chapter, namely, develop-

ments of the thermodynamic functions in inverse powers of the volume,

are valid only for volumes above v., for which the system is entirely
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gaseous. We shall now show how the equations of the last chapter

and those of the previous section join at r = r,. In addition, equation

(12) for Vf, is inconvenient for numerical calculation because of its use

of the undetermined function We shall arrive at an alternate

equation for the volume p<‘r molecule of the saturated vapor v,.

If we return to equation (13. 5G) for V(dP/dV)T, which is valid

only in the gaseous phase, that

it is seen that, w^hen v takes the value t*p defined as the largest positive

root of the equation

(14. 23) Z = 1,
k>l

the quantity (dP/dV)r becomes zero, the pressure no longer increases

with decreasing volume.

The question arises, however, whetlu^r the volume Vp is smaller than

the volume in w^hich case the equation (22) w^ould be invalid, since

then Vp would be a volume in the region of condensation. We shall

show that Vp and e, arc identical, and shall do this by showing that Zp is

equal to fto ' value it has in the condensation region, but is

smaller than this at all volum<\s higher than Vp,

Comparison of equation (23) with (5) shows that

(14. 24)

If now equation (13. 42), that

»’p = P
—1

(14. 25) In Z = —In e — 22 /3k

k> 1

.-k

is used for Z„ at the volume t = p
^

(14. 26) In Zp - In p - L 0kP^
k>l

is found. This equation is identical w'ith (14) for the value of In Z in

the region of condensation for which Z = to

Now equation (25) is valid as long as the sum J^lvbiZ^ converges, that

is, as long as Z is smaller than Zp and boZ is smaller than unity. In

particular it is certain that the equation is valid for very large values

of the volume v. If (25) is differentiated with respect to In v one obtains

which shows that (d In Z/d In v) is negative and Z is smaller than Zp



Bq.i4.29] TEMPERATURE DEPENDENCE 305

for all volumes larger than Vp, which, by the definition of equation (23),

is the largest volume for which (27) is zero.

It follows that for all volumes greater than Vp the parameter Z is

smaller than b© ^ J^lvbi2f converges. For these volumes

the system is entirely gaseous, no large clusters are present, and all the

equations of the previous chapter are valid. The volume Vp defined by

(23) is the largest volume for which Z — bo^, and is therefore the same

as Va defined by equation (12).

At low temperatures, as will be shown in greater detail in the follow-

ing section, all the jSjc's are positive. It follows, therefore, that equation

(23) has a positive non-infinite root, and is not zero. At sufficiently

low temperatures, then, condensation takes place.

The thermodynamic equations for the saturated vapor are the equa-

tions of Chapter 13 for the imperfect gas with the volume — Vp =
defined by equation (23). The vapor pressure of the liquid is given

by the equation for the pressure of the imperfect gas at this volume,

and the free energy F of the liqxiid at its own vapor pressure is the free

energy of the vapor.

14f. The Dependence of the Irreducible Integrals on the Temperature

The general predictions which we have been able to make so far about

the behavior of the system have been almost independent of any assump-

tions concerning the values of the irreducible integrals 0^, In order to

proceed further it will be necessary to examine these integrals and to

attempt to predict certain characteristics of their dependence on the

temperature. Unfortunately, accurate numerical evaluation of the

integrals themselves, even with rather simple assumed forms for the

potential u(r) between two molecules, is possible only for the first two

or three members of the series.

The first integral Pi can be evaluated readily as

(14. 28) 4irr^(c
,-u{r)/kT

for any assumed potential u(r), if necessary by graphical integration.

In section 12c, equation (12. 19), it was found that Pij which was there

simply designated as p, was approximately given by

(U.29)

This equation holds moderately well for high temperatures, P\ actually

increasing more rapidly with decreasing temperature than is indicated

by this equation as T becomes very small and a/kT becomes large

compared to b.
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The second integral 02^ equation (13. 27), may be evaluated ana-

lytically using a fairly accurate approximation to the true potential,

u(r), without too much difficulty. It is found that, whereas at very

low temperatures it is positive and considerably larger than jSf, it

decreases with rising temperature much more rapidly than jSf and
becomes negative at a temperature about three and a half times lower

than the temperature at which 0i becomes negative.

The third integral, /^a, equation (13. 28), is considerably more dif-

ficult, but rough values* may be obtained by making approximations

for the potential u(r). It appears, unfortunately, to be rather strongly

dependent on the exact form of the potential used, so that it is doubtful

that the values so obtained are of great accuracy. 03 has the dimen-

sions which are the same as 0i and 02^^. At low temperatures 03 is

larger than either jSf or and it decreases with temperature more
rapidly than either of these quantities, crossing zero to become negative

at a temperature slightly lower than the temperature at which 02 becomes

negative.

The higher members of the series of integrals would be impracticably

difficult to calculate, but some estimations of their behavior may be

made. It is certain that they must all be positive at sufficiently low

temperatures, and that, at low temperatures at least, they must decrease

in value as the temperature increases. It appears to be probable that

they all become negative, or at least decrease to values which are negli-

gible compared to /9i at about the same temperature that 02 and 03

become negative.

01 is the second virial coefficient of the gas, and the temperature at

which it is zero is known as the Boyle temperature. The three-and-a-

half-fold lower temperature at which 02 and 03, and also presumably all

the higher jS^’s, become zero, is then slightly lower than the observed

value of the critical temperature in most gases.

The integrand of each of the terms making up a certain irreducible

integral is a product of functions fij\ Each of these functions has a

maximum positive value when the distance between the molecules

takes the value for which the potential u{rij) is a minimmn. This maxi-

mum value of the function /,y is very high at low temperatures. The
terms in 0^ with a large number of functions fij in the product will

therefore contribute most to the integral at low temperatures. There

is, however, an upper limit of approximately twelve functions per mole-

cule which may all have simultaneously nearly their maximum values

in any part of the configuration space. At low temperatures, then,

the most important contribution to will be expected to arise from

* Sally F. Harrison, Dissertation, the Johns Hopkins University, 1038.
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those terms for which there are approximately twelve /f/s per molecule.

At higher temperatures the maximum value of the functions is lower,

whereas the negative value of approximately minus one in the region of

low Tij values, where the potential is positive, is almost independent of

the temperature. The terms with a smaller number of product func-

tions become relatively more important contributors to the complete

integral ^ as the temperature increases.

For very large k values, and at low temperatures for which all the

integrals are positive, the logarithm of ftt will be proportional to k, so

that one may define ^o> with the diim^nsions of volume, analogously

to the definition of 6oj

(14. 30) lim “ In = In /?o*
k~«>oQ k

Just as with 6| in equation (9), one may write

(14, 31) /3k =/(k,r)/3S,

in which this equation (31) defines the function /(k,r), about which we
only know that

(14.32) lim .-ln/(k,r) = 0.
k-*jo k

However, certain characteristics of tliis function f{k,T) may be stated

with reasonable certainty. For k values lower than 15 or 20 there is no

term in the integrand of /ik containing as man}" as twelve fij s per mole-

cule for which all the functions can take their maximum values simul-

tan(‘ously in an}” part of the configuration space. Consequently at very

low temperatures the kth root of /3k for these low k values must be con-

siderably smaller than which is the kth root of /3k as k approaches

infinity. This means that for low Umipcratures and relatively small

values of k the function /(k,r) must be extremely small compared to

unity.

Furthermore, we may estimate the behavior of this function f{k,T)

for very large values of k. The most important terms in the integrand

of ^k will be those for which there is a function fij for every one of the

distances which can simultaneously take the optimum value at which

is a minimum. In a term of large k value there will be a number of

molecules proportional to k^^^, w^hich will be on the surface of the corre-

sponding diagram, and which cannot be the optimum distance from as

many neighboring molecules as tho.se in the interior of the frame. These

molecules will contribute, on the average, less to the total integral than
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fiot so that the most important factor of fik^T) will be a constant, less

than unity, raised to the power

The fact that /(k,?) is small for low k values, and for high k’s

approaches zero as with y positive, assures us that the sum of

f(k,T) over all k values will be small, at least at low temperatures. As
the temperature becomes higher the terms in /9k with fewer prod-

ucts fij become relatively more important, and the difference of the

contribution to the integral due to the molecules on the surface and
those in the interior decreases. Therefore y decreases and /(k,T)

increases with temperature, whereas Po decreases with increasing

temperature.

To summarize, then, this can be said about the irreducible integrals

/9k* For temperatures lower than about the neighborhood of the critical

point of the system, all /9k’s will be positive and will be represented by
equation (31). The function /(k,T) in this equation converges to zero

with increasing k as and will be very small for all k's at low

temperatures. The function /(k,r) increases with increasing tempera-

ture. The quantity Po decreases with increasing temperature. At a

temperature approximately that of the critical point the p^*& of higher k
values become negative, pi remaining positive until a temperature

about three and a half times higher than this, the Boyle temperature of

the gas.

Using these properties of the integrals /9k we shall show that the

system must have a critical point at the temperature Te, above which no

condensation phenomenon exists, that is, above which (dP/dV)T is

nowhere zero. There must also be a second characteristic temperature

Tin for the system which is lower than Te, and the usual phenomena
associated with condensation, namely, that the system separates into

two phases of different density and that the pressure of the supersatu-

rated vapor is higher than the equilibrium vapor pressure, occur only

below the temperature Tm- The temperature Tc must be slightly

higher than the temperature at which the /9k’s of high k values become

negative, and the temperature Tm is presumably lower than this

temperature.

14g, The Critical Point

Since Vp of equation (23) has been identified with the volume v, of the

saturated vapor, this equation may be used for the determination of

Vg, rather than the unwieldy definition (12) which contains the undeter-

mined function f(l,P).

As long as all /9k’s are positive, wliich is true at low temperatures,

equation (23) will have only one real positive root. The derivation of
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equation (7) for &o in section 14b was rigorous only if all the are

positive, and the identification of the root of (23) as the volume
at which boZ becomes unity was dependent on (7), The more involved

method of Appendix A XI shows that the complete argument is valid as

long as there exists a real positive root to (23).

As the temperature increases, some, at least, of the integrals with

high k values become negative, whereas the first. Pi, remains positive to

much higher temperatures. There exists a temperature Tc, above which

there is no positive root to (23), that is, no volume for which (dP/dV)T
becomes zero and for which boZ is unity. This temperature, the highest

Ffc. 14. 2. Plot of 2!) kiSkv ^ against V ^ at ditferent temperatures.
k-i

for which (dP/dV)T has anywhere a zero value, is called the critical

temperature.

This can best be illustrated by a plot of the sum against the

reciprocal volume at temperatures in the neighborhood of the critical

value, Fig. 14. 2, Curves IV, V, and VI. With the first coefficient, Pi,

positive, the sum rises, at first linearly with from zero at = 0,

with the slope Pi. If the higher /J^’s are negative the slope of the curve

rapidly diminishes through zero to a negative value.

At temperatures below Curve IV, the maximum value of the sum is

greater than unity, and the largest root v, of (23) is given by the value of

V where the curve first crosses unity. At a temperature above Tc,

Curve VI, with Pi still positive but smaller than at the lower tempera-

ture, and the higher ft^'s more negative, the curve does not attain the

value unity. At exactly Tc, Curve V, the maximum of the sum just
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reaches unity, and the maximum of the curve is at v,. This value of

V, at Tt will be designated by the critical volume per molecule.

It is clear from the figure that at the maximum of the sum

= 0 = vj:k%v-*.

This condition must be fulfilled at the critical point. The critical point,

then, is determined by the two conditions, namely, that simultaneously

(23), Ek/3ki)7‘ = 1, and

(14. 33) E = 0
k>l

are fulfilled, which will be true only at the single temperature Tc And
volume Vg.

Since (22) states that

1
,

ijr(ai7r

it is evident from the plot that, at Tc, {dP/dV)T is negative at all volumes

above and below the critical volume Vg, having the value zero only at

this volume. The point jv is an inflection point of zero slope on the

isothermal plot of P against v. At higher temperatures, ( 'urve VI, the

inflection point occurs at the volume for which is a maximum,
= 0, but where the first sum is smaller than unity, so that

(dP/dV')r is negative at all volumes.

14h. The Temperature T„,

A further analysis of the plot of against the reciprocal volume

indicates that the system must have a second characteristic tempera-

ture Tm, below Tc. A (rareful examination of the properties of the

system shows that the usual phenomena associated with condensation

appear only below Tm- If, in the range of low temperatures for which
k=iV

both 00 and/(k,r) of (31) are positive, the sum Xfk0^v'~^, which, it
k-t

must be remembered, contains only a finite number of terms, is plotted

against one obtains curves like I, II, and III of Fig. 14. 2, resem-

bling that of Fig. 14. 1, for against Z.

For low values of the curve increases linearly with the slope

being the value of 0i. This slope increases as the positive terms of

higher k values become important. At the volume for which 0ov‘~^ = 1

the curve rises abruptly with increasing value of with a slope which is

practically infinite.

If, as in Curve III, the value of the sum is greater than unity when
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V = 00, the volume is larger than 0o, and the volume v = 0o is in the

condensation region where the equations for the gas are invalid and would

lead to the physically ridiculous case that (dP/dV)T be positive. If,

however, the sum is less than unity as = 0o
^ is approached,

Curve I, the curve crosses unity abruptly at a value of infinitesimally

greater than 0o S that is, at a volume infinitesimally smaller than

Using equation (31) for it is seen that the value of the sum when
00'“' = 1 is given by

(14. 34) ''Lk0k'“^ = LV(k,r) (00'-"' = 1).

k«l k^l

Since we have seen that it is to be expected that the function /(k,r)

becomes extr(?mely small at low temperatures, and increases with

increasing ti^mporature, one may expect that at sufficiently low tempera-

tures the sum (34) will be less than unity. It must increase with

temperature, and sinc(' f(l^T) = Pi 'Pot this member alone must be

greater than unity at some temperature lower than Tc where the higher

01,’s are approaching zero while 0i remains positive and moderately

large. There must, tlierofore, be some temperature Tm for which

(14. 35) E\/(k,r} » 1, r = Tm.
k-l

and this temperature Tm must be lower than the critical temperature Tc.

For temperatures equal to and lower than Tmj r, is determined by the

equation

(14. 36) I’c = 00, r < Tm.

since the curve of crosses unity at this value of the volume in

this temperature range, (.^irves I and II of the figure. Between Tm
and Tc, equation (23) that 2k0jcT’7** = 1 n^'tst be used for the determina-

tion of I’c.

14i. The Physical Interpretation of

The equation '^IvbiZ^ = 1, the solution of which d<4 ermines Z as a

function of the volume and temperature, has two distinct ranges,

depending primarily on the volume v: that for which v is greater than

Vg, and the sum converges; and that for volumes less than r* for w'hich the

solution boZ is determined by the higher terms of the sum. Below v/

the solution is still dc^termined by the higher m(?mbers of the sum, but

the 6|’s arc volume dependent, and their ftli root i.s no longer given by the

simple volume-independent (juantity bo.

Similarly, the equation ]Ek0k''r*' = 1 < the solution of which determines

the volume per molecule of the saturated vapor, as a function of the
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temperature, has three ranges which depend on the temperature only.

For the upper temperature range, T > Tc, there is no real positive root

to the equation. Between r« and Tc the sum converges at the volume
Vt which is the root of the equation. For T < T^, the solution v, = Po
is determined by the higher members of the sum.

In the next section the equa-

tion for d In Va/d In T will be de-

rived, and, as may be expected,

it will be evident that this

quantity is discontinuous at Tm.

In Fig. 14. 3, the isothermals

of pressure plotted against vol-

ume in the neighborhood of the

temperatures Te and Tm, and

for volumes near r. and Vf, are

shown. The curves for volumes

of Vf and below are pure im-

provisations based on experi-

mental knowledge. For vol-

umes higher than v/, however,

the general character of the

curves follows unambiguously

from the equations. The sig-

nificant feature of these curves is the change in character above and below

the temperature Tm- Above this temperature the sum ap-

proaches unity continuously as the volume decreases to v,, and con-

sequently the slope of the isothermals, {dP/dV)T, equation (22), is

continuous through w,. Below Tm the sum approaches a value

less than unity for volumes infinitesimally greater than w,, and the

slope, (dP/dV)Tt of the isothermals is discontinuous at v,. The be-

havior below Tn is the one usually associated with condensation.

For temperatures lower than one may draw a continuation of the

curve for the gas into the region of condensation, a continuation which

represents the higher pressure of the supersaturated vapor. The mean-

ing of this continuation in the equations is not hard to discover. If the

configuration space, over which the original integration of the configura-

tion integral is extended, were limited not to include regions for which

many molecules are all close to each other, the cluster integrals b| of

large I values would be absent from the integral. In this case the sum
would be limited to contain only a few members wdth low

values of k, and would not show the sharp rise at t; = /9o given in the

curves of Fig. 14. 2.

Fio. 14. 3. Plot of pressure against volume

at different temperatures near the critical

temperature.
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The system so inhibited corresponds to the supersaturated vapor

when the volume is lower than Large clusters are inhibited from

forming in this system, and the equations for it would lead to pressures

and free energies higher than that of the mixture of saturated vapor-

condensed phase, for volumes between v, and r/. This system, without

large clusters, is thermodynamically unstable in the volume range

of condensation, and the real system will separate into two phases

of densities vj^ and if held at a total volume between Nv^ and

Nvf.

At temperatures above Tm no such extrapolation of the gaseous curve

to higher pressures in the condensation region is possible. The con-

tinuation of the curve for the gas leads directly to a range for which the

pressure does not increase with decreasing volume. A system inhibited

to contain only comparatively small clusters, but an unlimited number
of them, has practically the same free energy as one in which one very

large cluster is present and fewer medium-sized ones. If the sum
converges at the Ith root of the cluster integral b| is inde-

pendent of I and has reached the value bo even at comparatively small

values of L

There is no reason to believe that a system, the volume of which is

decreased, at a constant temperature between Tm and To through the

range between i», and v/, vdW show the characteristic separation into two

phases which occurs below The replacement of many medium-

sized clusters in the system with one very large cluster does not result

in an appreciable reduction in pressure or free energy. There is no

thermodynamic driving force tending to separate the system into two

different phases.

It can be shown* that the assumption which we have already pointed

out to be reasonable in section 14f, that (1/k) ln/(k,r) goes to zero as

— leads to a term which may be interpreted as the surface ten-

sion of the condensed phase at temperatures lower than Tm* but the

equations definitely show that there can be no surface tension at tem-

peratures higher than Tm- The absence of the surface free energy above

Tm is intimately connected with the equal stability of many small or

medium-sized clusters, or one very large cluster, in the condensation

range of volume.

The temperature Tm is the temperature at which the sharp meniscus

separating the liquid from the gaseous phase will disappear in a system

heated at constant volume v between the two values v^m and v/m at Tm-

It is well known that the disappearance of the meniscus can be observed

for a range of volumes, and is a phenomenon not limited to the single

• J. E. Mayer and S. F. Harrison, J. Chem, Phys,, 6, 87 (1938).
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volume Vc, as would be demanded by a P— y diagram such as the van der

Waals equation predicts, Fig. 12. 2.

There is considerable other evidence for the existence of this critical

region, but it is difficult to ascertain experimentally to what extent the

magnitude of the observed region in temperature and volume interval

depends, wholly or in part, on the presence of impurities in the system.

The equations discussed in this chapter indicate that it must be a

phenomenon observable in a pure one-component system. Until

numerical calculations of the /3k's can be performed, no indication of the

theoretical temperature interval between and Te is available.

Experimental evidence* indicates that this difference is 10® to 15®, and
the volume difference between v, and Vf 10 to 20 per cent, for some

materials.

14j. The Thennodynamic Functions of the Saturated Vapor
^

The equation for the determination of the volume per molecule,

of the saturated vapor, is

(14. 37) E = 1,
k>l

the solution of which, below the temperature Tm where the true liquid

phase exists, is determined by the higher terms only,

(14, 38) Vg = ^Of

(14. 39) In fio = Hm In

Since the sum (37) is constant one may set its derivative with respect

to the logarithm of the temperature equal to zero, obtaining

(14. 40)
rf In _ Ek/3k(<i In In T)vT^

d]nT
~

LkVr’'

Between Tm and Te equation (40) is convenient to use, since both

sums converge, so that the inclusion of only a few terms leads to a

satisfactory approximate evaluation. The terms d In /3k/d In T are

negative, so that v, decreases with increasing temperature. At Te, in

* See, for instance, Tapp, Steacie and Maass, Can. J. Research, 9, 217 (1933).
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vipw of (33) that the sum is zero, the slope of r, against T
becomes minus infinity.

Below Tm it is more convenient to use (31) for /3k, so that

(14. 41)
^Ingk ^

^ln/(k,T) d\n 0o

d\nT dlnT d\nT'

If this is substituted in (40), one obtains

d In r. i:kdk(^ In f(k,T)/d In T)v7^ d \n fio

d inf
“ ’

“
** d In r'

The terms of vc'ry large k values in the sum are appreciable in

magni1.\ide for T < Tm, so that the corresponding terms are

enormous and th<' sum in the denominator of the first expression above

can be said to be infinite. In view of (32) the terms of the sum in the

numerator must at least be appreciably smaller than those in the sum of

the denominator. The first term of the above equation may then be

set equal to zero below One obtains

(14. 42)
^ In V, ^ d In Bn t <T
d\nT d\nT'

which would be obtained by direct differentiation of (38).

The sum approachcis a definite value as v decreases to the

value and this limit of the sum is not unity, but smaller than unity,

for values of the temperature lower than This limit is given by the

equation

(14. 43) lirn £ k/(k,r),
k>l k>I

or, what is the same thing, by calculation of the first few terms only of

the sum £k/3k?’7^ which converge (juite rapidly. It is this limit (43) for

this and similar sums which is to be used in the equations of the previous

chapter to obtain the properties of the vapor at the saturation point.

For instance, from (22)

with etpialion (43) will give the value of {dP/dV)T,v^v^ for the saturated

vapor which would be im'asured by velocity of so\ind expcrim*'nts, or by

any other method in which the condensation of the vaj>or was inhibited.

If the pressure of the system were gradually increased so that the forma-

tion of large clusters was not inhibited, the sum should be extended to
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include its members of high k ra/ue, so that the aim is unity, and

(^/>/^F)r = 0.

For the pressure P, of the saturated vapor one may use equation
3. 46) vinth n SE ftflS. 46J with V = p,

(14. 45)

L k>i k +

respect to thetemperature one may use
^

(14. 46) ^ = f^) ,
<*,

The term {dP/dVg)T is zero so that

rfT* *-.L ki',k+l(,*+~inr

.-Id In 5o

rflnTktik

Uang the fact that kV(k + 1) = k - k/(k + 1) and that is
unity, one obtains

^ *

(14. 48) —
* = iff 1 _ iiLioV, _ y. k A

dT r.LV din 7A kfikTT^^"* )
k dln/(k,r)- z

k>ik + l din 7
In denying this, use was made of the fact that the sura is

FnnS•w2^“ Mfinitesimally greater than v,.

8*'^®® of {dP/dT)y for the saturated vapor if the
limit (43) is mserted for the sum. It is to be noted that

(14. 48')
dP, ns S* _ _ a^rapor ^condtnwd

dT AT' N{v, - Vf)

from equation (13. 57), which is the well-known thermodynamic
Clausii^lapeyron equation. From (48) it is seen that there is no
discontinuity m dP./dT or AS/AF at 7„, and consequently there is no
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true change of phase in the condensed part of the 83rstem at this tempera-

ture.

The equations for the work function A, the entropy S, E, H, and Cvt
for the saturated vapor may all be amply obtained by using the volume
V9 in the corresponding equation of Chapter 13 for the imperfect gas.

14k. Phase Changes in the Condensed Phase
It is possible to see, qualitatively at least, the relationship between the

methods used here and the treatment of the crystal in Chapter 11. It is

also possible to ascertain the conditions under which a phase change
would take place in the condensed phase.

As has been stated in section 14f, the most important contributors to

the irreducible integrals of large k will come from the terms in the inte-

grand for which there are a considerable number of functions /»y per

molecule. As was also pointed out in Chapter 13 these integrands may
be represented by diagrams of numbered circles, representing molecules,

connected by lines for each function /»•/ occurring in the product. For
large k values three-dimensional diagrams are more enlightening than

figures in a plane.

The functions fa are zero if the argument is very large, and minus

unity if this distance is extremely small, but they have a positive maxi-

mum at the distance r,/ for which the potential u(r</) between two mole-

cules is a minimum. The term in the integrand, then, will have its maxi-

mum value if all the distances represented by lines in the figure (for

which there are all functions /»,• in the term) are as nearly as possible

equal to this optimum distance.

If a figure is drawn with k + 1 circles arranged in a three-dimensional

close-packed lattice with twelve nearest neighbors to each circle (except

those of the surface of the figure), and twelve lines are drawn from each

circle to each of its twelve equidistant neighbors, this figure corresponds

to one of the terms in the integrand of the irreducible integral This

term receives its maximum contribution to the integral from that part

cf the configuration space where the molecules actually are arranged in

the manner of the figure, that is, in the close-packed lattice structure.

There will be approximately k ! such terms, or figures, corresponding

to one lattice, since k ! different permutations can be performed between

the molecules in the lattice. This cancels the k ! in the denominator of

the definition, equation (13. 25), of 0k-

There will also, of course, be many other terms in the integrand of

0t, and among them others which correspond to perfectly regular

arrangements of the molecules in other lattice types with differing num-

bers of neighbors per molecule.
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Howov(>r, not only the terms in which there is onefa, and a line in the

figure, for evi-ry pair of neighboring moleeules in the ciystal should be

.siiid to belong to one ery.stal t3'pe, but others as well. For iastance,

thm will be jnk-fold as many terms with just one line missing as there

nre with all the neighbors connected by iin^, if n is the numlwr of

nciMsns to evorv molecule in the crystal There m l also ho approxi-

i(hk) auk - D-fold as many terms with two Juics missing,

and roughly (M) •' !-Md as many terms with m lines

missinff, nt. hast for romparutivoly small values of m compared to. 2^k.

I'bcsc terms also will rontribiifo io the integral chiefly from th^it.part

of (h(» configjjration sj)aoo rorrospoiHiiiig to thn n^gular arrangenipi^t of

the inol<*(Mjlos in tho particular lattice type to w'hich the term wit.h\ no

lines niis.sing corresponds.
\

As well as the terms which differ from tlic prototype for the lattice

type by the absence of certain lines or functions there will be terms

whicli diff(,T by having an excess of functions connecting molecules which

are next to neighbors. In spite of the confusion as to exactly how many
missing lines there may be, or how many lines tocJ many, before the term

is no longer said to belong to a certain lattice type, it will be possible to

assign the ti'Tins which are the most important at low temperatures in

the integrand of to different lattice types.

The integral over all the terms corresponding to the lattice type y

will contribute the additive quantity

f.(k,T)^

to the irreducible integral so that one may write

Pa = Z/.(k,T))3S.,
p

where the summation is to be carried out over all lattice types v.

As before, the total number of terms is comparatively small, and for

the logarithm of one may use the logarithm of the largest term in the

sum, that which may be designated by the subscript v max.

The limit of the kth root of is whose logarithm is the limit of

k“^ times the logarithm of approaches infinity. One then finds

that

Po “ Pop Diax.‘

In general, one may expect transition temperatures such that below a
certain temperature one crystal type contributes most to the integral,

whereas above this temperature another type gives the maximum term.

The derivative of the logarithm of fio with respect to temperature will be
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discontinuous at this temperature, and from (48) it is seen that dPJdT
will also be discontinuous at the transition temperature.

Among the various terms, there must be some which do not corre-

spond to any crystal typo, but which have fewer functions per mole-

cule, and which correspond to the liquid. One of these terms appears

always to be the maximum term at sufficiently high temperatures; the

transition temperature at which it exceeds in value that of the optimum
crj’^stalline type is the fusion temperature.

The various terms for the different cr>'stalline lattices would offer no
insurmountable difficulties to numerical evaluation. The integrand of

the sum of all terms corresponding to one lattice type, or better, the

logarithm of the sum, could be expanded as a power series in normal

coordinates giving deviations from the position for which the integrand

is a maximum, the stable configuration of that crystal type. The
method is then closely analogous to that of Chapter 11. Unfortunately

it is not clear as yet how this procedure could be ai)plie(l to the terms

corresponding to the liquid phase.

141. The Cell Method of Calculating Liquid Partition Functions

The method which, at the present time, appears to (;omc closest to

giving reasonable numerical values for the thermodynamic functions of

liquids is entirely different from that discussed so far in this chapter and
is not one which could be described as altogether satisfactory. It may
be called the cell method. Briefly, it consists of estimating the contribu-

tion of an average molecule to the complete configuration integral of the

system, (10. 51). The configuration integral divided by .V! will be

approximately the jVth power of the contribution from one mole-

cule.

In a liquid, the average molecule is presumably pretty well hemmed in

by its neighbors and constrained to move in a space, or a cell, the volume

of which is one-JVth the volume of the complete system. This cell in

which the molecule can move is surrounded by other molecules, so that

the potential energy of tlie one molecule considered will be a function of

its position in the cell. Instead of wTiting this potential (*riergy (‘xplicitl}’

as a fuiH'tion of the positions of the neighbors, we may attenjpt to

average by assuming some equilibrium or average position of the mole-

cules surrounding the cell.

For instance, the simplest assumption which could be made is that the

surrounding molecules were located at the centers of the lattice points

of a close-packed cubic lattice, one lattice point of which is the center of

the cell in question. With some such assumption regarding the positions

of the neighbors it is then possible to calculate the potential energy.
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u(x,y,z), of the one molecule in its cell as a function of the displacements,

X, y, z, of the molecule from the center of the cell.

Brfore going into further detail concerning the exact nature of the

Dotentkl function u(x,y,2) the possibilities of its use may be investi-

^ted. The conhguration integral Q, of the system is given by (lo. 51)

as

(14. 49) Qr = ff- • f drr ' ' dry,

in which U is the potential energy of the whole system, and the integra-

tion is to be extended over the volume elements of the N molecules.

As before, the discussion will be limited to monatomic molecules, for

which dti — dxi dyi dZi.

By defining the cell integral,

(14. 50) q, = JJJ dx dy dz,

over the volume t> = V/N of one cell, one may attempt to write

(14. 51)
N\

= q"

since N ! permutations of the N molecules among the N cells lead to

configurations with one molecule per cell.

The validity of this method will be estimated by investigating the

results obtained in two cases for which a control is possible, namely the

perfect gas and the regular monatomic crystal.

The comparison is readily made for a perfect gas. The potential

is zero, and the integral q, is just v, the volume of the cell, which

is the volume per molecule in the gas. The cell method, equation (51),

yields, then

(14. 51') In = N In f>, (u = 0).

In contrast, direct integration of the general etiuation (49) with U = 0

leads to

(14.49') ln%; = JVln7-lnAn = iV(ln«+l), ([7 = 0).

The difference of N between equations (49^) and (51^ is due to the

neglect, in calculating (5l0) of the possibility that more than one mole-

cule could occupy a cell, leaving other cells empty. This difference in
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the two equations leads to a difference of £ per mole in the calculated

absolute entropy^ a term which Eyring calls the communal entropy.

One may be inclined to bt lieve that for the perfect gas a model assum-

ing the molecules to be limited to a distribution of one per cell would be

particularly bad; however, the cell method leads to an error of only R
per mole in the absolute entropy.

The application of this cell method to a crystal leads to equations

equivalent to the Einstein equations for the thermodynamic functions.

One assumes that the potential energy uix^y^z) of the molecule in the cell,

as a function of the displacements x, y, z from the center of the cell, can

be developed as a power series in these displacements. The constant

term may be set equal to zero, corresponding to the choice of zero for the

minimum potential of the system. If the cell is symmetrically sur-

rounded by neighbors the linear terms must have zero coefficients. For

a regular (cubic) crystal the coefficients of the quadratic cross-product

terms, xy^ are zero, and the three remaining quadratic coefficients are

equal . One may write

(14. 52) «{x,y,a)
^

+ z*)

plus terms of higher order. If this is used in (50) for q,. one finds

+ 00

(14. 53) q, * fjf
(»*+*»+*») dy di

-00

since, for large enough values of a, the integration may be extended with-

out error from minus to plus infinity, instead of only to the boundaries

of the cell.

Using (53) in (51), and the resulting equation in (10. 50') for the

complete phase integral Q of the system, one obtains

(14. 54)
^ V(2imkT\/2irkT\f^>^
® - L(—)(—)J

The frequency v for the three isotropic vibrations of the molecule in



322
a)NDENSAT10N

(Sec. la

the cell of potential given by (52) is

_i If.

(14. 55)
'' 2T^tn’

so that (54) may be written

/kT\^
(14. 54') Q =

By comparison with (11.7) it is seen that this is the classical partition

function for a crystal having 3N identical frequencies.

It is worthy of remark that if the communal entropy, R per inofe, is

added to this, which means the addition of N to the value of In Q, one

finds

hT
(14. 54") In Q = 3JV In— + .V,

hv

and for A - --kT In Q,

(14. 56) A ^ aA'jfcrj^ln^ -

By comparison with (11. 42) this is seen to be the classical oxpre.ssion

for the Debye crystal! In short, adding the communal entropy to the

value* obtained by the use of the cell method with equation (51 ) leads to

an equation in agreement with that obtained from the Debye method.

The agreement, however, is somewhat illusory, since the fretiuency

of equation (56) with wiiich one molecule would vibrate in its cell if the

surrounding molecules w'ere fixed in position is Jiot that of the maximum
Debye frequency with wiiich the molecules vibrate against each other.

The error introduced by using (54') for the partition function of a crystal

depends considerably on the type of forces between the molecules of the

lattice, since these determine the ratio of the frequency (55) to the maxi-

mum Debye frequency of the crystal. One may, however, be in con-

siderable doubt w'hether, in using this cell method, one would do better to

add the communal entropy by adding N to the value of In Q,. given by

equation (51) even for a crystal, or to omit it, and use (51 ) directly.*

The equation equivalent to (51) wliich one w'ould use for QJN ! if

the system is such that the communal entropy is to be added is, then,

(14. 67) ^ = (eqy.

' O. K. Rice, J, Chem. Phys., 7, 883 (1839).
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This equation, (57), and uot (51), gives the correct value of the con-

figuration integral for a perfect gas.

Eyring* has assumed that the communal entropy should be omitted

and equation (51) used ii- • alculations for a crystal, but that this entropy

term should be added by the use of (57) in making calculations for a
liquid. The communal entropy of R per mole enters, then, at fusion,

and, according to Eyring, accounts for a considerable part of the entropy

of melting. This viewpoint has been attacked,t and apparently with

considerable justification.

In addition to the doubt concerning the so-called communal entropy

there remains a considerable awkwardness in the interpretation of the

potential u(x,yyz) to be us(?d in c*quation (50) for q^. The total potential

energy U of the system is th(^ sum of tlu^ mutual potentials of the

^N{N — 1) pairs, i andj, of molecuh^s. If the sum of all the potential

pairs between the molecule in the cell and its neighbors is used for calcu-

lating u{XyyyZ)y thcii tlic sum of these cell potentials over all cells gives

twice the total potential energy U of the sysk'ra, since the poticntial of

each pair is counted twice. In determining the potential of the cen-

ter of the cell it is therefore necessary to halve the sum of the potential

pairs of the molecule at this position v^iih all its surrounding neighbors.

If, on the other hand, one desires to calculate u(XjyyZ) in such a way
that the correct total potential is given by (iV — l)ao + u(x,y,2;) when
all but one molecule occupies its cell center, and the one is displaced to

X, y, Zj then the total increase in all mutual potential pairs connected to

the displaced molecule must be counted into w(x, 2/,2). Thus the force

constant a of equation (52) should bt^ calculated from the sum of all

potential pairs between all other molecules and the one of the cell, if the

frequency v of equation (55) is to be the actual frequency with which

one molecule would vibrate in its cell if the neighbors wercj held at fixed

positions.

The cell potential is then calculated in the somewhat arbitrary way of

counting only one-half of the sum of all mutual potential pairs to the

cel^ molecule in order to calculate the value of uq at the center of the cell,

but adding the total change in these potential pairs when a(x,i/,2 )
— uo

is determined. Even with this convention there remain various pos-

sible assumptions which may be made concerning the positions of

the molecules surrounding the cell. Surroundings like those of one

niolccule in any of various types of crystals may be used. Probably

the simplest assumption is that the molecules surrounding the (?ell are

* H. Eyring and J. Hirschfelder, J. Phys. Chetn., 41, 249 (1937).

t O. K. Rice, J, Chem, Phys.y 6, 492 (1937), 7, 883 (1939), J. G. Kirkwood,

J. Chem. Phy8.y 7, 908 (1939).
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at the lattice points of a close-packed lattice, of which one point is the

center of the cell in question.

One may, then, proceed to a higher approximation. The probability,

P(x,y,z) dx dy dz, that the molecule of any cell occupy a volume element

between x and x + dx^y and y + dy,z and z + dz, away from the center

of the cell, is proportional to dx dy dz. This is used to

calculate the probabilities that the surrounding molecules of a cell should

be displaced from their “lattice points/' A new potential, ^2 (^, 2/,2)1

may then be calculated by multiplying the potential obtained from each

position of the neighbors by the probability of their occupyingi that

position, and integrating over all positions. This method would Ixvome
very tedious if no approximations were introducf^d, but appc'ars t,o be

practical if not carried out too conscientiousl}".

In applying this cell method of calculation, no real distinction is nmde
between a cr^'stal and a liquid, except by the arbiti ary and dubious differ-

ence of the use of (51 ) for a crystal and (57) for a liquid, the difference of

adding the communal entropy if the system is known to be licjuid. It can

scarcely be said that it offers a “ theory " of the litpiid. It does, how-

ever, enable very approximate calculations to be made of the thermo-

dynamic functions of a condensed phase at the temperature and pres-

sure for which the liquid is stable.

It is possible, of course, to assume some reasonable analytical form for

q„ equation (50), involving arbitrary parameters, and to choose tlu^se

parameters* in such a way as to fit the experimental properties of the

liquid with a considerable degree of accuracy. The accuracy of the lit

will depend on the happiness of the choice of the analytical form of q,.

and on the number of arbitrary parameters adjusted. Sin(;e many
normal liquids can be mad(j to coincide in proptalies by adjusting the

volume and temperature scale (section 12d), one could presumably

obtain a moderately good equation involving only two adjustable param-

eters, a volume and an energy constant.

The form of the cell potential xi{x,y,z) is a function of the volume of

the system, since the volume of the system determines the distance of

the cell neighbors from the center of the cell. I/mnard-Jonesf has shown

that this form is mvh as to h'ad to an equation for the pressure resem-

bling the van der Waals curve. The critical temperature is found to be

given moderately satisfactorily by this method, but the critical volume

somewhat less well.

Guggenheim,} who apparently first introduced the cell method of

* J. F. Kincaid and Henry Eyring, J, Phys. Chem^f 43, 37 (1939).

t J. E.Leimard-Jonesand A.F. Devonshire, Proc, Roy. Soc., London, A163, 53 (1937).

t £. A. Guggenheim, Proc. Roy. Soc., London, A136, 181 (1932).
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calculation, has applied it to the comparison between solutions and a

pure one-component system, as has also Kirkwood.* This appli(!iition

of the method is certain!}’' more justifiable than an att(Mnpt to compare
the liquid with other phases of the same composition.

One may make this general statement about the status of theories

concerning the liquid at the present time. In section 1
1 j

it w’as pointed

out that certain conditions on the elastic constants had to l)e fulfilled if a

crj’stal were to remain rigid, that is if it were to be stable as a crystal.

This enables us to bound the P—T region for which any i)articular

lattice structure is stable. In the equations of this chapter it is shown
that the gas is stable only for volumes great enough that a certain sum
converges, that is, for volumes greater than I’a = /So, equation (30).

There exists, in general, a region of temperature and pressure for

which neither gas nor crystal is stable. For this n^gion one may assume

a crystal-like distribution of some type and calculate by tlu' ct‘ll ini*thod

approximate values of the thermodynamic functions. Oiu^ should find,

in general, that the free eiK^rgy of the assumed distribution is low(‘r than

that of a gas for these temperatures and pressure’s. A dc’tailed investi-

gation should also show that the elastic constants of this assumed dis-

tribution W’ould not have the positive value's necessary to give the phase

the rigidity of a solid.

In so far as the calculations for the assumed distribution are accurate,

the free energ}' so calculated is an upper limit, since the true distribu-

tion must always have a lower free energy than any other. However, in

the usual calculations the free energy of the assumed distribution is

artificially forced to be lower than that of the crystal by the addition of

the communal entropy.

Th(^ calculations made in this w'ay do not offer any evidence that the

assumed distribution mimics, in anj^ important respect, the actual dis-

tribution of the liquid. Until some general consistent mc’thod is devel-

oped by which a systematic investigation of the partition function Q for

all distributions can be undertaken, and that distribution for wliich the

integral is a maximum determined, it cannot be said that a truly ade-

quate theory of the liquid exists.

The method of calculation used in the preceding sections of this and

the previous chapter makes exactly such a systematic development of

distributions for the gas. The distribution, in this case, is defined by the

numbers mi of clusters of I molecules each which are close together, in

excess of the random distribution. By taking all possible values of mi

all conceivable distributions are counted, and the sum of the integrals

over all distributions is the integral of the w'hole configuration space.

• J.G. Kirkwood, Chim, Rev., 19. 275 (1936).
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The distribution for which the integral is a maximum, the equilibrium

distribution, is then determined.

The distribution for which the system exists in the condensed phase

is included; it is that distribution for which a very large fraction of all

the molecules are in one cluster. The integral for this distribution,

however, is too complicated to be evaluated directly. A further sub-

division of the terms making up this integral into more finely defined

distributions must be made. As yet no clear-cut definition of parame-

ters, the values of which could be used to describe the distribution in a

liquid, has been formulated. Tliis represents at least one of the obsta-

cles which must be surmounted in order to obtain a true theory ^f the

liquid phase. «



CHAPTER 15

ELECTRIC AND MAGNETIC FIELDS

(a) Introduction, (b) Rigid Dipoles in an Electric Field, (c) The Dielec-

tric CJonstant. (d) Electronic Polarization, (e) Comparison with Refrac-

tive Index and Experimental Data, (f) Non-Rigid Molecules, (g) The
Lorentz-Lorenz Force, (h) Para- and Diamagnetism, (i) Paramagnetism

in Quantum Mechanics, (j) Ferromagnetism, (k^ Magnetic Cooling.

(1) Thermodynamic Equations in Electric Fields, (m) The Calculation of

F in a Field.

16a. Introduction

In all problems conddered up to now the only variables of the system,

besides the numbers of molecules or of atoms, were two in number, and

could be chosen as E and V. Instead of the extensive properties E and

V it was sometimes found convenient to express the thermodynamic

functions of the system in terras of certwn intensive variables with prop-

erties analogous to those of forces, the temperature and pressure.

In general, a system may be influenced by various other forces corre-

sponding to extensive properties other than energy and volume. For

instance, a rigid crystalline solid may be subjected to various tensions

which result in an alteration of its shape, without necessarily involving

a change in volume (section 11j). The amount of force applied is

related to the displacement in these cases by one of the several elastic

constants of the body.

In this chapter we shall be concerned with the effect of electric and

magnetic forces applied to the systems by means of external electric or

magnetic fields. The calculations will at first be nrnde in the simplest

possible manner. In later sections the more general method of develop-

ment by which more complicated problems might be treated will be

indicated.

16b. Rigid Dipoles in an Electric Field

A S3rstem composed of independent molecules possessing ripd per-

manent dipoles, and subjected to an dectric field S, will be treated.

The electric field, of dimensions force divided by charge, which is the

same as charge divided by length squared, pves the magnitude and

direction of the electric force exerted on unit charge. S is therefore a

vector quantity, but since only relatively timple problems will be dealt

with, in which the field direction is kept constant, and in isotropic

327
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media for which the effects are independent of the direction of the field,

the equations used will involve only the magnitude of the field, which

will be written 6.

The force acting, per unit charge, on the charged part of a molecule

in a dense medium is not, in general, the same as the external applied

field 8. In this section we limit ourselves to a dilute gas, where the

difference of the local field 8ioc. and the external field 8 is negligible.

The correction for this effect will be dis(;ussed under section 15g.

The dipole moment of a molecule is defined as a vector pointing from

the center of negative charge to that of positive charge. The magni-

tude, po) of the dipole moment has the dimensions charge times length.

In atoms, which consist of a positive nucleus and a spherically sym-

metrical distribution of electrons, the centers of the positive and nega-

tive charges are located at the same place. The dipole moment is

zero. 'Phis is not true of non-symmetrical molecules. The total

amount of negative and positive charge in a neutral molecule must, of

course, be equal, namely, ze, where z signifies tlie number of electrons,

and e the magnitude of electronic charge. If the distance between the

centers of positive and negative charge is called /, the magnitude of the

dipole moment, po, is defined as the product fee.

The electric field tends to orient the dipoles in space. The potential

energy of the inol(‘eule in the field does not depend on the position of

the center of mass, but only on the angle of orientation. If B is the

angle between the axis of the molecule and the direction of the field, so

chosen that when 0 = 0 the positive end of the molecule is directed

toward the negative plate producing the field, then the potential energy

of the molecule in the field 8 will be

(15. 1) u(^) = — fee8cos0 = — po8cos^.

The magnitude of the dipole moment po in a real molecule will depend

somewhat, but in most diatomic molecules, at least, not greatly, on the

amplitude of vibration or on the quantum state of vibration. This

effect will be neglected at present.

In the absence of a field the probability that any axis of the molecule

lies in a certain solid angle range dQ with respect to fixed coordinates in

space is just proportional to the solid angle range dQ. The solid angle

range di2 corresponding to values of B between B and 9 + d9 is propor-

tional to sin B d$. The angle B may vary between 0 and t. The integral

of sin B dB from 0 to ir is 2,

I
sin ^ d^ = 2,

0
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so that, is used for the probability that the angle 9 lies between
B and B + dB^ one may write

(15. 2) w(B) 5 sin B dJB (zero field).

The probability w(B) dB of the orientation will be altered in the pres-

ence of the field by the dependence of the energy of the molecule on

the angle B, equation (1). In section 6t^, it was found that the average

density of molecules in the element dq of the configuration space is pro-

portional to d(/, where u{q) is the potential energy as a func-

tion of the position q in the coordinate space. The probability w{B)

that a molecule will have the orientation B is then proportional to the

configuration volume corresponding to that angle, equation (2), times

the exponential, In this, u(B), the part of the potential

energy which depends on B and B alone, is given by (1). Since w{B) dB

must be unity when integrated over all angles B from 0 to t, the equation

has to be normalized by division with this integral.

One may, therefore, write, in the field C,

(15. 3) w{B) dB =
^sinde

fhi
t/Q

sin B dB

Expression (3) gives the classical probability that the angle B between

the dipole moment po and the field € lies between B and B + dBj if u{B)

is given by (1), independently of the complications of the molecular

structure, provided only that the dipole is rigid, i.e., not stretched or

altered in magnitude b}’^ the field.

The integral in the denominator of (3) may be evaluated exactly,

using (1) and cos ^ = f, sin ^ cW = —df

r'^,Posco.»/*rl

Jo 2

kT . ,=— sinh

-

J

PoS

Expanding c* = 1 + » + i*® ^
, the result may be mitten

(15. 4)

The average projection of the dipole moment along the field (pon*
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tive end of the dipole toward the negative of the plates producing the

held) will be

(15. 5) cos B tp(0) dB.

One must integrate, using again cos 6 —

r‘ ^ f2 «/_i 2 poSL J

_ ?P l^gPoBAr _e-Pos/*rJ

~
3 \tT/L lO\kTj

Dividing this by (4), one finds

(15. 6) p = po gW./kf _ g-Kf/kf

kT [ /poe\-po- = PoLcoth(^-j--J

1 _ i /P''^Y
ib\W/

The function of equation (6), coth x — x~‘, called the Langevin func-

tion, L(x), is plotted in Fig 15. 3, page 347, curve for j
= «>. It in-

creases monotonously with x from zero at x = 0, to unity as x approaches

infinity. From the expansion it is seen that L(x) = x/3, if x C 1.

For increasing argument the slope of L(x) decreases, approaching zero

as X = 00
,
L(x) = 1. It is seen that p behaves qualitatively as one

would expect. For small fields p is proportional to the field 6; as

X * po8/fcr increases, the ratio of p/6 decreases, until, for large

values of x, that is, high fields or very low temperatures, p becomes

independent of 6, p = po. The system has then reached saturation;

p has reached its maximum value, and all the dipoles are oriented in

the direction of the field.

For all practical cases with electrical fields the approximate result

(15. 6') 6 = 1^6^
3 AT®

is of sufficient accuracy, since the quantity fo&/kT is very small com*
pared to unity. The exact equation (6) will be referred to later in

dealing with magnetic effects.
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16c. The Dielectric Constant

In the previous section it has been found that the application of an
electric field of ma^itude 6 to a dilute gas composed of molecules hav-

ing a permanent rigid dipole moment po results in a net average orienta-

tion of the dipoles in the direction of the field. The average projection

p of the dipole moment on the field is given by equation (fiO*

The product of the average oriented dipole moment p per molecule,

by the total number of molecules, is a quantity of the dimensions of

charge times distance. The polarization ” P of the gas-is the value of

this quantity divided by the volume, the total (oriented) net dipole

moment, in the direction of the field, per unit volume,

N
(15.7) P =

The dielectric constant c of the gas may be defined in various ways.

One of the definitions is

( 15 . 8 )

P
6 '

Using (6') in (7) and (7) in (8) one finds

( 15 . 0 )

pg

3 V kT'

Qualitatively the result of equation (9) is easily interpreted.. A
medium of high dielectric placed between the plates of a condenser

increases the capacity. The increase in capacity is caused by an induced

polarization in the material, bringing the negatively charged ends of

the molecules toward the positive plate, which partially neutralizes the

field, requiring a greater applied charge to produce the same voltage

difference between the plates. The amount of net orientation of the

molecules is proportional to their dipole moments, po, and to the field 8,

and inversely proportional to the temperature which tends to keep their

orientation random. The amount of polarization produced is propor-

tional to the density and to the product of the dipole moment by the

degree of orientation, therefore to the square of the moment po.

16d. Electronic Polarization

Monatomic molecules and symmetric di- or polyatomic molecules,

like He, Ne, H2 ,
N2 , CH4, and CCI4, possess no permanent dipole

moment po. Their gases do, however, have dielectric constants c dif-

fering from unity, although usually smaller than those of gases com-

posed of non-symmetrical molecules like HCI, CHsCl, and CO.
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The value of € — 1 in gases of symmetrical molecules is due to the

fact that the electric field induces a dipole moment in the molecule.

This may be regarded as being caused by the equal and opposite forces

of the field acting on the negatively and positively charged parts of the

molecule, tending to separate their centers which are coincident in the

absence of the field.

This effect is primarily electronic, namely, due to the displacement

of the electron clouds around the nuclei in the electric field.

The displacement, and therefore the polarization, are proportional

to the field. The proportionality constant a is called the polarizability

of the molecule

(15. 10) Pi = a6,

where p* is the induced dipole moment along the field. In molecules

with permanent dipoles, this effect is superimposed upon that of orienta-

tion discussed in section 15b.

Actually a is not a simple number. If the molecule is not spherically

symmetrical the value of a will depend on the direction of the field with

respect to the various axes of the molecule. In addition, if the field is

not acting parallel to a symmetry axis of the molecule, it may produce

perpendicular components of polarization. These components at

right angles to the field always average to zero in a gas, although they

are of importance in a non-isotropic crystal.

The observed average induced dipole moment in the gas will always

be in the direction of the electric field, and will be given by equation (10),

where a is the value of the polarization, averaged over all orientations

of the molecule with respect to the field.

If the molecule possesses a permanent dipole moment certain orien-

tations are preferred if a field is applied. This has some, but little,

influence on the interpretation of a as the average over all orientations.

The general equation for the total average projection of the dipole

moment along the direction of the field will then be, instead of (6')i

06. 11 ) i, = (. + l|)e,

where a is always positive and non zero, but po is zero for symmetrical

molecules.

Using (11) in (7) and (8), one obtains, instead of (9),

06. 12) +

This equation is known as the Debye equation for the dielectric
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constant. It is found to give the temperature dependence of € excel-

lently for most simple gases. Experimentally, c - 1 is proportional to

the density at low densities. In section 15g this equation will be
further improved as regards its density dependence.

16e. Comparison with Refractive Index and Experimental Data
The dielectric constant « depends on the frequency v of the field used,

if alternating fields are applied. Equation (12) was derived only for

static or low-frequency fields. Connected with 6 is the index of refrac-

tion n{v) of light of frequency v.

The index of refraction n{v) is determined by the refraction of a beam
of light crossing from vacuum through a sharp boundary into the medium
in question. It is defined as the ratio of the sines of the angles of the

incident and refracted beams.

Neglecting the truly insignificant difference between the magnetic

permeability and unity, one may identify the dielectric constant 6 with

the square of the index of refraction for the mme frequency

(15. 13) €(v) = ln(*')]".

At the frequency of visible light the term in (12) due to the orienta-

tion of the permanent dipole moment, Po 'fcT, contributes nothing to the

index of refraction. This may be made plausible by the observation

that the frequency (10^^) of visible light is far higher than the fre-

quency (10^®) of rotation of most molecules. The molecules have not

time to orient themselves before the direction of the electric field due to

the light has changed sign. They cannot follow a field of high frequency.

The polarizability a in (12) may then be obtained by either of two

methods. It is the intercept on the ordinate \/T = 0, T = «>, of a

plot of F(€ — l)/4irA’’ against the reciprocal temperature. It may also

be determined by an extrapolation to y ~ 0 of the index of refraction

from the values for various frequencies in the visible region.

One of the standard examples for the interpretation of the experi-

mental data, and of the information which is to be obtained from them,

is the series of compounds, CH4, CHsCl, CH2CI2 , CHCla, and CCI4.

Fig. 15. 1 shows S&ngcr’s* observations of the dielectric constants of

these gases as functions of temperature at constant density.

It is seen that the curves for CH4 and CCI4 are both horizontal,

showing zero permanent dipole moments. The molecules must, conse-

quently, be symmetrical, and either a tetrahedral or plane square

arrangement of the Cl and H atoms about the carbon is demanded.

The polarizability of CCI4 is seen to be about three times that of CH4,

* R. S&nger, PApsiib. Z., 87, 556 (1826).
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owing to the far greater polarizability of the chlorine atoms than those

of the carbon and hydrogen. The value of c — 1 »= 0.00096 for CH4
found here is fairly close to the value 0.00086 found for — 1 by

extrapolation from the meas-

ured index of refraction in

the visible region. The dis-

crepancy is presumably due

to the contributions of the

infra-red vibration bands to

the index of refraction n(0)

which is not obtained by
extrapolating measurements

made with visible light.

This addition to n* at y = 0

from the infra-red vibrational

bands is usually much smaller

in diatomic molecules than in

those of methane. It is the

part of the polarizability a
due to the displacement of

the atomic nuclei by the field, and is discussed in the next section.

The appreciable slope of the lines for the other chlorides in Fig. 15. 1

indicates that they have permanent dipole moments. The values of

Po calculated from the slopes are

1.86 X 10“*® e.s.u. for CHgCl,

1.59 X 10“*® e.s.u. for CH2CI2,

and

0.95 X 10“*® e.s.u. for CHCls.

The dipole moment of a molecule containing several rigidly connected

dipoles is the vector sum of their several moments. By making the

unwarranted assumption that the dipoles along the C—H bonds are

zero, the value of po for CH3CI gives directly the moment of the C— Cl

bond. By assuming this dipole moment for the bond to be constant,

one may use the laws of vector addition to obtain the angle between

the C— Cl bonds in CH2CI2 and CHCI3.

For CH2CI2 the angle 0 between the two C— Cl bonds is found by
setting I X 1.59/1.86 = cos which leads to ^ = 128®. For CHCI3
the angle ^ between the CH bond and any one of the C— Cl bonds

(assuming a distorted tetrahedral model so that all three angles are

equal) is obtained by J X 0.95/1,86 = sin ( 90®), ^ » 96®. Con-
siderable refinements are required before such calci^tions of angles

0.002 0.0025 0.0030 0.0035

Fig. 15. 1.

Dielectric Constants* at one Atmosphere of

CH4. CHaCl, CH2CI,, CHCh, CCI4.

* From the data of R. Singer, Phynk If. 556

(1926); the figure is from Van Vleck, “The Theory of

Electric and Magnetic Suaceptibilitiee." Oxford Uni-

vanity Pren.
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are to be taken too seriously. However, the measurement of dipole

moments readily permits one to ascertain whether a molecule is sym-

metrical, and almost always distinguishes clearly between cis and trans

isomers.

The numerical values of the dipole moments themselves are not with-

out interest. Using the value of the elementary charge c = 4.8 X 10“^®

e.s.u., one sees that the dipole moment, 1.86 X 10‘‘^®e.s.u. of CH3CI,

corresponds to a positive and negative elementary charge separated by

1.86/4.8 = 0.4A. This is a comparatively large dipole moment, l^hat

ofHCl is only 1.03 X 10'“^*e.s.u.,and that of HI only 0.38 X 10“'®t\s.u.

For HI, for example, band spectral data show the separation of the

hydrogen and iodine nuclei to be 1.4lA. The separation of two ele-

mentary charges corresponding to the dipole moment is only 0.08A.

16f. Non-Rigid Molecules

In section 15d it was stated that the polarizability a was primarily

an electronic effect. This statement is not always strictly true. The

qualitative distinction betwetm electronic and atomic polarization may

be describexl as follows.

An increase in the distance between the two atoms of a symmetrical

diatomic molecule, such as H2 or N2 ,
will not in general produce a dipole

moment. The induced polarization caused by the electric field may be

described as being due to the displacement of the negative electrons

with respect to the nuclei. However, a change in the distance of sepa-

ration of the two nuclei in a molecule like HBr will, in general, result in

a change of dipole moment.*

Inversely, the force of the field will tend to change the distance

between the atomic centers, and the induced polarization in the field

will be partly due to a change in the internal vibrational coordinates

of the molecule.

A related, but at first thought apparently different, effect will arise

from the change of the dipole moment with temperature due to increased

vibration.

These two effects will be investigated here. Strictly, in dealing with

displacements of the vibrational coordinates, a quantum-mechanical

treatment should be used. The qualitative aspects, however, are given

sufficiently well by classical considerations, which will be employed.

Let the symbol q stand for a value of the set of the 3n — 5 or 3n — 6

(linear or non-linear molecules) vibrational coordinates (Chapter 8 )

• It is to be observed that an increase in the distance between nuclear centers by

no means necessarily increases the dipole moment. The reverse may conceivably

take place.
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and dg for a volume element in the configurational space of these coor-

dinates.

The potential energy of the molecule may be written u(q). For
normal coordinates and sufficiently small displacements, g = 92

' *
* Qiy

«(«) = and dq = Adqi dq^--- dqt.
X

The dipole of the molecule will be a vector whose direction and length

depend on q, Ixit the length be given by p(g). The angle between

the dipole for any q and th(^ direction of the field will be written 9. The
average dipole moment projection along the field may be written at

once as

(15. 14) p =n p (g) cos 9 sin ^

^

^

No numerical integration can be made until the form for the poten-

tial u(q) and the dipole moment p(g) is known. However, in the

absence of a field the average square of the dipole momcmt p^(T) which

is a function of temperature is

(15. 15) p2(T) = ~ _

The integral in the denominator of (14) is the same as that in the

denominator of (15) to within terms of order This may be seen

by developing as 1 + [p(g) 6 cos 9]/kT + • •
• . The inte-

gral / ^ sin 9 d9 = I, so the integral of the unity in the development

is the same as the denominator of (15). Since / ^ cos sin 9 = 0,
t/Q

the second term of the development contributes nothing.

The integral in the numerator of (14) is 8/3kT times that in the

numerator of (15). This is found by again developing

^vig)€co^/kT ^ 1 ^

The integral of the first term vani.shes because / cos 9 sin 9 d9 — 0,
Jq

The integral of the second term, over 9/is I | cos^ 9 sin 9 d9 = i. The
•'o
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integral over q is then that of the numerator of (15) times E/3kT,
One finds, therefore, that the average projection p of the dipole

moment along the field is

(15. 16)
IpW

^ 3 kT
6 1

where p*(r) is the average square of the dipole moment, averaged over

all internal configurations.

The two effects mentioned at the beginning of the section— the

change of dipole moment with temperature, and the increase in dipole

moment due to the force of the field— are seen to be both taken into

account by using the average square (not the square of the average)

dipole moment in equation (12). In this case the remaining term,

the polarizability a, is to be interpreted as the purely electronic polariz-

ability.

However, for normal molecules it will be shown that the ax'erage

square dipole moment as a function of temperature is given by

(15. 17) p2(T) = + 3kTa„

where po, the temperature-independent term, is the dipole moment
squared at the position of minimum potential energy.

As in section 8c it will be assumed that u(g), the potential energy as

a function of q, may be developed, with sufficient accuracy, as a sum of

squares of the normal coordinates,

(16. 18) tt(g) = ZWx®.
X

The magnitude of the dipole moment, p(q), will vary linearly with

q\ (at least for small displacements), so that

(15. 19) p*(g) - (po + LMx)*
X

— ^ + 2po26x?x +
X X .

Using (19) and (18) in (15), the first term in (19) leads to exactly

Po after integration. The second term in (19), linear in q\, leads to a

aero integral in (15), as do also the cross products with X ^ « in the

third term. The remaining parts of (19) lead to a term in (16) pro-

portional to temperature. This is seen by urang the variables

fx = (ox/2Jb3’)^^*gx. The integral of the denominator of (15) is

n(2Tlfcr/ax)‘'*, and that of the numerator of this part
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n(2irlkr/ax)^'* X:^(3fcrcx) where

(15.20)

By writing

(15. 21) = Zcx
X

equation (17) is obtained.

It is seen that as long as the temperature is low enough to use the

approximate quadratic terms in the normal coordinates for the poten-

tial energy one finds, using the classical equations, that the average

square of the dipole moment is that of the square of the dipole moment
at the lowest potential configuration plus a term linear in T. Using

(17) in (16) one obtains again the form (11) for p or (12) for the dielec-'\

trie constant.
^

In a molecule such as CH2CI—CH2CI there exists a normal coordinate '

which measures the angle of the equal and opposite rotation of the

two CH2CI groups around the C—C bond. The potential energy up
to about kT at room temperature will not be given well by a purely

quadratic term in this displacement. The vibration of this coordinate

will deviate considerably from harmonic behavior. Only in cases such

as this will one expect a more complicated dependence of € on T in gases

than that given by (12).

However, the term in (21) is in one respect experimentally dis-

tinguishable from the atomic polarization term. The term am is due to

the displacements of the heavy nuclei by the electric field, and these

will not “ follow ” an alternating field of much higher frequency than

the natural vibrational frequencies of the molecule. The extrapolation

to zero frequency of index of refraction measurements made with

visible light, which are unaffected by the term ««, will consequently

lead to values for the electronic polarization and will not include the

part am in the temperature-independent part of (12).* This has already

been mentioned, in the last section in the discussion of methane.

16g. The Lorentz-Lorenz Force

The electric field 6 within a gas or any other material having a dielec-

tric constant € not unity is different from the value of the field outside

of the material. In a vacuum between two condenser plates the elec-

* The term om is connected with the intensity of the infra-red vibrational bands of

the molecule. The reader interested in the relations between the various proper-

ties of the molecules and the theory of molecular structure is referred to the book of

J. H. Van Vleck, The Theory of Electric and Magnetic SuaceptibUitiee, Oxford, at the

Clarendon Press, 1932.
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trie displacement SD and the electric field 6 are identical. If the charge

on the condenser plates is kept constant the displacement £) is unchanged
by the introduction of the material between the plates, provided that

the plates are large compared to the distance between them. The field

8, however, is reduced within the (isotropic) material to the value

8 = SD/€.

This reduction in the field 8 is due to the polarization of the material,

the induced charge brought to the surface of the material tending to

cancel the effect of the charges on the condenser plates. The average

electric force on an infinitesimal charge averaged over all positions

in the material, would be given by 5e8.

However, the electric force acting on the charged parts of a single

molecule is different from 8. This is due to the fact that the average

field of the molecule itself must be subtracted in making such a calcu-

lation.

The local field 8ioc. acting on one molecule is therefore not 8 but

differs from it by a term which may be calculated* from the average

polarization density P in the material. This additional force is known
as the Ijorentz-Lorenz force. Its magnitude depends on the distribution

in space of the molecules.

If the molecules are randomly distributed, the local field acting on

a molecule, 8i„c., is given by the Clausius-Mossotti formula,

(15. 22) fioa = e + y P,

which will not be derived here.f

By using (22) for 8ioc. insiead of 6 in equation (11]

and (8), one finds

P

and this in (7)

* See, for instance, the discussion in the first chapter of Theory of Electric and

Magnetic SueeeptibUiiies, J. H. Van Vleck, Oxford, at the Clarendon Press, 1932.

t The derivation is given in H. A. Lorentz, The Theory of Elecirone, section 117

and note 54.
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The quantity {V/N){€ — l)/(c + 2) is found to be independent of

density up to very high pressures in gases. For instance, Magri* finds,

in measurements on air, that it remains constant within the experimental

error of about 0.4 per cent up to 180 times normal deninty, whereas

{V/N){t — 1) increases by 4 per cent in this range.

In fact, for non-polar molecules, po =» 0, the quantity (F/iV)(€ — 1)/

(e + 2) is constant to within about 10 per cent in going from the vapor

to the liquid phase. This is an extremely severe test, since the method
of derivation is scarcely applicable to liquids.

i6h. Para- and Diamagnetism

The equations for para- and diamagnetic materials in magnetic fields

are analogous to those for molecules with and without permanent dipole

in electric fields.

Assume every molecule in the gas to have the same permanent mag-'

netic moment /io. In the magnetic field JC the potential energy is

(15. 24) u{B) = — MoiiCcos^,

analogously to (1), where B is the angle between the magnetic moment
and the direction of the field. The subsequent calculations of section 15b

are exactly valid, and one finds, for the average component of the mag-
netic moment )il in the direction of the field,

(16. 25) ii = « [coth - ^] s i K.

The magnetic polarization (per unit volume) M is

(15.26) M =

and magnetic susceptibility x may be defined as

(15. 27) ^ V kX’

in analogy with (9). This equation holds for paramagnetic substances.

The fact that the paramagnetic susceptibility is inversely proportional

to temperature is called Curie’s law.

Just as in section 15d we discussed the fact that the electric field

induces a dipole in molecules, so molecules possessing no permanent

magnetic moment acquire an induced moment in the presence of a

magnetic field. However, this induced magnetic moment is always in

the opposite direction to the field, that is, it opposes the field.

* L. Magri, Physik, Z., 6, 629 (1905).
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The equation obtained is theii analogous to (12) except that the

temperature-independent term occurs with the negative sign in the

magnetic case.

That the impressed magnetic moment opposes the field is a conse-

quence of electrodynamics. The current induced in a closed electric

(drcuit by the impomtion of a macnetic field is such as to create a moment
opposite to the field.

There is one other distinct difference between the infiuence of electric

and magnetic fields. In equation (12) the two terms, a and j^/3kT,

are both of the same order of magnitude. The paramagnetic suscep-

tibility (orientation effect) given by (27), if it is present at all, that is,

if Mo is not zero, is some hundred- to several thousandfold larger than

the effect of the induced magnetic moment, called the diamagnetic

susceptibiUty. As a result one usually neglects the diamagnetic effect

in dealing with paramagnetic substances, and uses equation (27) with-

out the negligible diamagnetic term.

It is not the province of this book to treat the relation between the

diamagnetic constant and the structure of the molecule. However, it

may be mentioned that for free atoms the diamagnetic susceptibility

is related to the average square of the distance of the electrons from

the nucleus, which we shall write fi.

The equation

gives the diamagnetic susceptibility, x> in which e

tively the charge and mass of the electron and c the velocity of light.

The sum is that over all electrons i of their average squared dis-
t

tances, tj, from the nucleus.

The method employed in this section is a hybrid of classical and

quantum mechanics. The assumption has been made that every mole-

cule (of the same kind) in the gas has the same magnetic moment hq.

Actually, if an attempt were made to explain the magnetic moment by
the motion of electrons under the influence of the electric field of the

nuclei, the application of classical statistics leads to a variety of mag-
netic moments each weighted with a certain probability dependent on
T, Van Leeuwin* has shown that a purely classical system of electric

point charges should exhibit zero magnetic susceptibility. The reason,

however, is intimately connected with the complete inability of classical

* J. H. van Leeuwin, Dissertation, Leiden, 1019, or J, de physique (6), 2, 361, 1021.
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mechanics to account for the properties of atoms if they are each com-
posed of one point mass nucleus and of electrons.

Whereas in the electric example only the approximation to equation

(25) is experimentally significant, magnetic susceptibilities in cases to

which these equations apply can be measured at extremely low temper-

atures, and the complete equation (25) can be checked experimentally

(section 15i). Although the approximation for low values of JC/io/fcr

is the same for classical and quantum-mechanical systems, the complete

equation differs slightly for the two methods of calculation.

We shall consequently, in the next section, make a somewhat more
logical development, taking cognizance of the quantum-mechanical

nature of the phenomenon.

16i. Paramagnetism in Quantum Mechanics \

A complete discussion of magnetic phenomena involves comparatively

complicated considerations of the applications of quantum mechanics

to atomic and molecular structure, which are not treated in this book.

Even after making the limitation to independent atoms and ions, there

remain a considerable number of different cases which must be con-

sidered separately.

For instance, the behavior of the atoms will depend on whether only

one electronic level is excited at the temperature considered, or whether

the multiplet separation ’’ of the energy levels is small compared to

kT. The effect of weak and of strong fields must also be distinguished.

For a complete description of the phenomena encountered the reader

is again referred to Van Vleck's Theory of Electric and Magnetic Sus-

ceptibilities.

The discussion in this section ill be limited to the example that the

energy of separation of the lowest and first excited electronic levels in

the atom or ion is large compared to both the energy of interaction with

the magnetic field and to kT. Furthermore, diamagnetic effects will be

neglected. In addition it w^ill be assumed that all the ions or atoms

considered are monatomic, and that the directions of their magnetic

moments are independent of one another.

This last condition does not, however, limit the applicability of the

equations derived to gases. The reason for this is that the electrostatic

and exchange repulsion forces which operate between most ions and

their environment in water solution or in ionic ciy’stals do not, as a rule,

concern primarily the electronic spin responsible for paramagnetism.

The orientation of the magnetic moment in the ion does not affect its

interaction with neighboring particles. The effect of the magnetic

field on tiie ions may therefore be treated as if the ions were completely
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independent of their surroundings, that is, as if they composed a mona-
tomic perfect gas.

The equations derived by this method are found to apply excellently

to relatively concentrated water solutions of paramagnetic ions. They
also fit well the observations made on many crystals, provided only that

the distance between the magnetically active ions is not too small.

This is realized in practice by using crysUls containing considerable

water of hydration.

Ions having the completed octet electronic structure, a lowest ^*So

state, are diamagnetic. Paramagnetism is observed only in ions of the

transition elements and the rare earths. These ions have lowest elec-

tronic levels possessing an angular momentum (j ^ 0).

Since exactly these ions have also several low electronic levels, the

limitation to cases in which the lowest excitid level has a high energy

compared to kT is not an unimportant restriction.

The magnetic moments of isolated atoms or ions are dependent on their

angular momenta. The connection between these two quantities is not utterly

simple but may be calculated correctly with the help of the so-called vector

model treated below.

The angular momentum of the ion in a given electronic level is due to the

rotation of the electrons. This rotation has two different components. One
of these is called the orbital angular momentum and is due to the motion of the

center of mass of the electrons about the nucleus. The second one is due to

the spin of the electrons about their own axes.

The amount of orbital angular momentum of the atom is determined by a

quantum number I in such a way that the square of the orbital angular momen-
tum is {h/2v)^l (f -b 1). The angular momentum squared due to spin is

(h/2ir)H(3 -f- 1), where s is the total spin quantum number (Russel Saunders

coupling, see section 6i). The total angular momentum squared is

where j is the quantum number of total angular momentum. The projection of

the total angular momentum on a fixed axis in space may take values mh/2v,

where j
> m > — j, so that m takes 2j -|- 1 values.

The magnetic moment Mo is likewise determined by the rotation of the electrons.

The symbol P will be introduced for the Bohr magneton, 0 « hel4irmCf where

e and m are the charge and mass of the electron and c the velocity of light.

The contribution to the magnetic moment due to orbital angular momentum is

just V/(f 4- l)/9, but the moment is directed along the axis of the orbital angu-

lar momentum.

The contribution to the magnetic moment due to spin is 2^/s{s + l)/3, along

the spin axis. The difference in the case of orbit and spin may be crudely and
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very naively described as being due to the fact that in the orbits the mass and

charge of the electron move together; in spin the charge, located on the surface

of the electron, rotates with a greater average radius than the mass, which is

distributed throughout the particle.

The square of the magnetic moment
of the atom or ion may be calculated

as follows:

We consider the two orbital and

spin vectors of magnitude vl(/ + 1)

and Vs(s + 1) adding vectorially to

make the total angular momentum

'^j(j4 l)i Fig. 15. 2. The orbital

magnetic moment, Vf(f + 1)^, and

the spin moment, 2Vs(s + l)/3, ailp

vectors of the same direction as thj|

respective angular momenta bu6

different relative lengths. The two

.

vectors, orbital and spin, process

rapidly about the total angular

momentum vector. The magnetic

moment square is found by squaring

the projection hq of the vector sum

-f l)j8 and 2\/b{s+ 1)P on

Orbital
Magn. mom . \ \

Fig. 15. 2.

Vector derivation of Landd ^-factor.
of

the total angular momentum vector.

The problem is one of simple trigonometry. The cosine of the angle ^ in

the figure is given by

COS0 = s(s+l)+ja + l)-f(/-H)

+ 1) Vs(8 + 1)

From the figure it is seen that li ^)gP the factor g is

v"s(s-f- 1)
(15. 29) ^ = 1 +

(
7=1 +

:COS<^,

Vi(j + 1)

s(8 + 1) -4" j(j + 1) ~ f(f + 1)
,

2i(j+ 1)

The square of the magnetic moment, moi of 8*^^ atom or ion in an

electronic level with given quantum number j of angular momentum, is

(15. 30) = i(j +

where P signifies the Bohr magneton,

(15. 31) /S = = 0-9273 X l(r“ e.m.u.
' irmc
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The Land4 actor in (30) is given by (29) in terms of the quantum
numbers I, and s for Russel Saunders coupling.

The level, of given j, is degenerate and consists of 2j + 1 states, dif-

fering in the value of m, the quantum number determining the pro-

jection of the angular momentum on the direction of the field. The
projection /la of the magnetic moment along the axis of the field is

(15. 32) Ma = mgff, (j > m > -j)

for the state m, and the energy due to the magnetic field has the form

(15. 33) €„ = = -mgPX.

The probability that an ion is in the statem is proportional to

so that the average projection /Z of the magnetic moment along the

field, for all ions, is

tt** +j

(15. 34) M = -1^
m--J

The first approximation of (34) for low values of gfiX/kT is exactly

the classical result (25), with (30) for mo- This may be seen as follows.

The exponential functions in numerator and denominator of (34) are

expanded in the usual manner as 6*' = 1 + 2/ + • •
•, and all but the first

non-zero term after summation is neglected in both numerator and

denominator. The first term in the denominator is obtained by using

unity for the exponential and is just the number of terms, 2j + 1. The

term arising from the unity of the expansion in the numerator is zero,

since extended over both positive and negative m values from

— j to + j, is zero. The next term does not vanish and is linear in r”^
Since

2 _= 3C
(3 + 1)3(23 + 1 )

kT 3

one obtains

(15. 35) M
1 gVi(i + 1)

3 kT

with (30).

Ek|uation (34) may be brought into an explicit form without recourse
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to the series development of the exponential. By writing = x

it is seen that

(15. 34')

m-+3
2^ nu."

M = —

d / ni-+j \

One uses the relations

iB-+j n-2j T.-J _ J+I -(H-1/2) _ ~-CJH/2)

r

;L” X>/2_3.-1/2 j

^
. jH/2) + 3.-(j+l/2)

1 J1/2+X-1/2
“ (j + 2O ^(1+1/2) _ j.-(J+I/2) “ 2 a;»/2 _ J.-1/2

If now the Brillouin function Bj(y) is defined as

(15. 36) Bi(y) = coth
j/]

- coth j. y

j
.1 g(i+i/2)tf/j ^ g-(Ji-i/2)»/j

1

j
g(j)-i/2)»/j (jfi72'i'/i

2j

it is seen that (34) becomes

(If). 37)

The imposing function (36) is plotted in Fig. 15. 3 for several j values.

It has properties similar to those of the classical L(ar) = coth x — x~^

e(}UMlion (6). For y^l the function may l)e developed, and one finds

«» J

whic h, upon siihstitution of 2/ = jg0,TC/lrTin (37), leads to equation (35).

For 7/ 1, ('" c”*', both h^^perbolic cotangents become unity and

J5j(t/)^1,
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80 that, upon substitution in (37), one finds

(15.38)

The saturation effect is reached when all the ions are pressed, by

the field, into the state m = j, w'here the projections of the magnetic

Fig. 15. 3*.

Plot of fi/no — Vj/j -f 1 ^j(y) against Hfio/kT = \/(j + l)/j y for various values of j.

Thie figure in from Van Vleck, *'The Tlicory of Klertnc and Mugnetio Suepeptibilities,*' Oxford

University Preea.

moments on the direction of the field have their maximum values,

Mm =* j^/3. This saturation moment, however, is not the square root

of (30), The value of the square of the magnetic moment obtained by

measurements with weak fields, using (35), leads to the j (j + 1) equation

(30), whereas the saturated magnetic moment obtained with a strong

field is only jgP,

For large j values the difference between j(j + 1) and is negligible.

The Brillouin function has the property that

r 1 1 c*' f 1

- coU, J
- - - •

Tlie classical equation (25) is obtained if j becomes large, in which

event the magnetic moment no is given by }gl3.

Actually, at l\igh temperatures, that is at about room temperature,

saturation or even very appreciable deviations from the approximate

equation (35) are not observable in the laboratory, except with ferro-
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j flip npxt action* The 88J11€ 18 trU6

magnetic substances, discussed

of electrical polarization produced by electric bms.

However, whereas the equations derived in this chapter for the
^

ec-

trical polarization are strictly applicable to gases only, and, less ngor-

Dusly, to dilute liquid solutions, those for magnetic fields are applicable

bo tertain crystals. The equations derived in this section may therefore

!:>e used in comparison with experiments performed at extremely low

i«mperaturcs. Since the behavior of the material depends on 3C/kT,

i lowering of the temperature corresponds to an increase in the magnetic

leld.

Approximate saturation has been obtained on hydrated gadolinium

sulphate, Gd2 (804)3 * 8H2O, at in Leiden.* The gadolinium

.on, Gd"*^, the lowest level of which is *^7/2, is the magnetically active

ion. Since the angular momentum of this ion is entirely due to spin

(<S state, 1 = 0), the g factor is 2. The results agree perfectly with the '

prediction using j = 7/2, g = 2, j/
= 7fi3C/kT in (37). In Fig. 15. 3

the crosses indicate the experimental values on this salt.

16j. Ferromagnetism

In section 15g it was found that the electric force acting on a molecule

in the material treated was not given simply by the electric field, but

by the macroscopic field 6 plus a term proportional to the polarization

density P. The proportionality constant was 4ir/3 in the Clausius-

Mossotti equation (22).

If it is assumed that the forces acting on one ion contain a term due
to the magnetic polarization M, so that (24) or (33) has the form

(16. 39) u{d) == —mo(3C + aM) cos^, or + cM),

one obtains equations predicting properties similar to those of ferro-

magnetic substances by using a sufficiently large value of a. Without
discussing the possible origin of the strong interaction term aM between

the magnetic momenta in (39) one may investigat>e the effect which it

has upon the macroscopic behavior of the substance.

Since the classical equation (25) and the quantum-mechanical one

(37) have the same qualitative features, it will be somewhat simpler,

and not essentially different, to treat the classical case. The substi-

tution of X + oM for X in (25), and multiplication of m by N/V to

obtain M, (26), leads to

(15. 40) M = Mo
N
V

coth g(3C + oM)]-
kT L_1
Pq SC + aMJ

* H. R. Woltjer, Leiden Communicalions 167 b.
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Equation (40) detennines the magnetic polariaation M (per unit

volume) in terms of the applied magnetic field, 3C, at any temperature.

The task of analytically solving (40) for M is not an easy one. The
solution may, however, be undertaken readily by a graphical method.
The term in brackets on the right-hand tide of (40) plotted as a func-

tion of

x = ^(X-haM)

is the Langeviii function Lix) of section I5b, a monotonously increasing

function, starting from zero a; at = 0 with a slope of and approach-

ing unity asymptotically as x goes to infinity. The quantity MV
which, according to (40), should be equal to the bracket, plotted as a
function of the same argument x, is a straight line, namely,

An M 7 kTV 5C 7
(15.41) — — : — — •

Ho N UHo N ano N

The slope of this line is independent of the magnetic field. With
increasing field X the line moves parallel to itself downward.
For given values of X and T the magnetic polarization M is deter-

mined by the equality of the right- and left-hand sides of (40), or, in

the plot, by the intersection of the straight line (41) with the curve

cothx — 1/x (see Fig. 15. 3, curve for j
= oo). The ordinate of the

intersection point determinesMV/hoN, It is seen that, with increasing

field but constant temperature, both the abscissa and ordinate of the

intersection point increase monotonously.

The temperature T determines the slope of (41) but not the intersec-

tion with the axis x = 0. For constant X an increase in T increases

the slope and thereby decreases the ordinate of the intersection point.

For zero magnetic field the straight line (41) goes through the origin

X = 0, M = 0, and intersects there the curve L(x). It is then apparent

that for X = 0 two different cases may occur, dependent on the inclina-

tion of (41 ) . If the line (41 ) is steeper than the slope of the curve at the

origin, that is,

a^N 3’ ^ Z k V’

this is the only intersection point. If this holds, as X goes to zero, the

magnetic polarizationM vanishes and for small enough values of the field

M is proportional to X. Qualitatively the substance behaves like a

paramagnetic one.
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In the other case, if the slope of the line is smaller than f

,

1 OjlS

Z k V

there exists a second intersection point for 5C » 0 with a non-vanishing

value of M. If the magnetic held is gradually reduced to sero, M
approaches this finite value. The substance has then a remanent

magnetic moment.

The temperature Te above which this remanent polarization

disappears,

(15. 42) Tc
l^N
Z k V’

is called the Curie temperature.

For T» Tc, equation (40) may be developed as a power series in its

argument

\

\

(15. 40')

“-If s(“+““)l‘-s(sT
Neglecting all terms but the first, the solution forM leads to

(15. 43)

INj^
Z VkT IN

~77ZTE^^ ^Vk(T-Tc)
3 V kT/

This development breaks down as T approaches Tc.

Qualitatively, the Curie temperature corresponds to a sort of con-

densation temperature. The term with the constant a in equation (39)

is an interaction between the atoms which reduces the energy of one of

them if it orients itself in the same direction as the preponderant one of

the others, which is measured by M. The orientation of all the atomic

magnets of the system in the same direction, even at zero magnetic

field, results then in a considerable decrease in energy, but also in a

decrease in the available phase space, a decrease in entropy. Above the

Curie temperature Tc the temperature motion is sufficient to maintain a

random orientation. If a field is applied, however, the interaction

tends to aid the magnetic field, so that T — Tc appears in the denomina-

tor of (43) instead of T in paramagnetic substances. As the tempera-

ture is lowered, and Tc approached from above, the interaction force

becomes more and more predominant. Even a weak field, instead of
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orienting only a few atoms, supplies merely the initiative. The force

a • M brings about almost a landslide, although, as long as 7 is greater
than Tcj the number oriented is still proportional to the magnetic field

for very weak fields.

Below Te there exists a real landslide. The temperature motion of

the atoms is not sufficient to counteract the energy decrease produced
by a common preferential orientation.

The description supplied by equation (40) is essentially in agreement
with the experimental observations on ferromagnetic materials. From
the measured Curie temperatures of the remanent magnetic substances
one may then calculate backwards the magnitude of a, the strength of the

interaction. For iron, the Curie temperature is about 1000®K. The
volume per atom, V/N, is 11.8 X cm®. If, for /xo, one Bohr mag-
neton, MO = » 10“®®, is substituted, one obtains for the dimensionless

quantity a the value 10^, an entirely different order of magnitude com-
pared to the 4t/3 occurring in the interaction of electric dipoles.

It might perhaps be mentioned here that not all samples of iron,

which at room temperature are all below the Curie point, show perma-
nent magnetism. This is due to the fact that the macroscopic material

is composed of domains of microscopic size. Presumably, below Te,

there exist individual domains which have permanent magnetic
moments, but the orientation of the moments of the individual domains
is random until a slight field is applied to bring them into alignment.

In substances which are paramagnetic at room temperature, the

peculiarly strong interaction of magnetic moments is missing. How-
ever, the equivalent of the Clausius-Mossotti formula, equation (22),

still predicts an interaction of the type considered here with a == 47r/3.

Paramagnetic substances would then have a Curie point, according to

equation (42), which depends on N/V but lies, for most salts, well below

1®K. Below this temperature the substances are ferromagnetic. The
experimental evidence on this point is not conclusive.

The discussion of ferromagnetism given in this section is practically

the classical theory of Weiss,* which so far as it goes may be regarded

as essentially correct. The chief contribution of the quantum mechan-
ics has not been to alter the equations, except unimportantly by the

substitution of the Brillouin function for (40), but to explain the occur-

rence of a in (39).

The nature of the strong interaction potential in ferromagnetic sub-

stances has long been a mystery. Of course, the force need not be of

magnetic origin. It is entirely unessential that the energy change is

written as though it depended on the magnetic moment mo* Both mu

* P. Wd88, J. de physique, 6, 667 (1907).
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and a are characteristics of the materiali and the force tending to orient

the magnetic moments of the atoms (or, rather, the spins of the electrons

in the metal) may have nothing to do with magnetism. The only reason

that it is connected at all with the magnetic field 3C is that both JC and

this force tend to accomplish the same result, a net orientation of the

atoms in such a way as to tend to point all their magnetic moments in

the same direction.

It remained for Heisenberg* to explain the orienting force introduced

by a in (39) as due to the exchange forces between electrons. The re-

sultant energy of one atom includes terms proportional to higher powers

of M than the first, which alone is considered in (39), and the complete

quantum-mechanical development is not as simple as that given here.

The origin of the orienting force is intimately connected with the necessity

of using antisymmetric eigenfunctions for electrons. If two electrons have

parallel spins, their spin function is necessarily symmetrical. The orbital

function of their positions must then be antissrmmetrical.

The antisymmetrical and symmetrical orbital functions differ primarily in

the fact that the probability of the electrons being spatially close together is

less for the antisymmetrical function. Since the electrons repel each other,

these functions, other things being equal, will have lower energy. The result

is a certain force tending to line up the electron spins in the same direction so

as to create the low-energy antisymmetric orbital functions.

16k. Magnetic Cooling

Low temperatures are ordinarily produced by use of the Joule-Thom-

son effect in gases. If the lowest-boiling gas, helium, is so liquefied, and

then evaporated under reduced pressure, temperatures somewhat under

1°K. may be produced. There exists, however, a practical lower limit to

the temperature which may be obtained in this manner, since the rate of

evaporation, which decreases with decreasing temperature, finally be-

comes as low as the heat leak into the apparatus. Recourse has been

taken to adiabatic demagnetization to cool even further.

The principle of the method is simple. In the absence of a magnetic

field the random orientation of the angular momentum vectors of the

(magnetically active) ions introduces an entropy iZ In (2j -f 1), per

gram atom, in excess of that due to lattice vibrations. The application

of a strong magnetic field, while the material is kept at constant tempera-

ture, tends to orient all the ions into the energetically lower directions,

reducing the entropy. This reduction of entropy, at constant tempera-

ture, in the strong field, demands a flow of heat q » LS/T out of the

material (calculated as if the field were applied reversibly). If the

* W. Heisenberg, Z. Phyvik. 49, 619 (1928).
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material, while under the influence of the field, is insulated, so that no
heat can flow in or out, and the field removed slowly enough so that the

whole process goes reversibly, no change in the total entropy of the

material takes place. The material is therefore cooled, since entropy,

and conse(iuently heat, flow from the lattice vibrations to raise the

orientation entropy of the magnetic moments to their original value of

Rln (2j + 1).

The process is usually carried out by applying the field while the salt

containing the magneti(;ally active ions is kept in contact with liquid

helium boiling at reduced pressure. The initial temperature, T*, in the

process, is then about 1®K. llie entropy due to the lattice vibrations at

this initial temperature is extremely low so that the method is very

efficient. Temperatures as low as about 0.004®K. have been attained

in this manner. Indeed, it is quite practicable at 1°K. to reduce the

entropy of some salts in a magnetic field by a greater amount than the

total lattice vibrational entropy at this initial temperature. The simple

consideration given above would lead one to expect cooling to 0®K. in

such a case, and, of course, there is obviously a flaw in the argument that

leads to such a prediction.

The error made lies in the assumption that a random orientation of

the magnetic moments would prevail at all temperatures in the absence

of a field. If any interaction at all exists between the moments, either

through a true magnetic force or owing to an interaction with the electric

crystalline field, some particular specified orientation of zero entropy

will be stable at 0®K. The entropy of orientation of the magnets will be

greater than zero above 0°K. but will approach the high temperature

value of K In (2j + 1) only at temperatures for which kT exceeds the

energy of interaction.

It is seen that the effectiveness of the magnetic cooling depends pecu-

liarly on the substance used. If the material has a high density of ions

with great magnetic moment, that is, if it has a high magnetic suscep-

tibility, the change of entropy, AS, at the initial temperature T*, with

a given magnetic field, is high. In this event a relatively high initial

temperature, or a relatively low magnetic field, may be used to attain

a given final temperature. However, high magnetic susceptibility in

the salt favors a large interaction between the magnetic moments, and

if low initial temperatures and high fields are available, the final tempera-

ture reached may be appreciably lower if a salt of low magnetic suscep-

tibility is used. For this reason salts with relatively small suscepti-

bilities, that is, with ions not having extraordinarily high monumts, and

very much diluted with water of crystallization or other inert ions, are

used to attain the low^est temperatures.
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The interactions which cause deviations from the ideal behavior cal-

culated here for ions with magnetic moments completely unaffected by
their surroundings are of two kinds. That which has usually the higher

interaction energy, and therefore becomes important at the higher

temperature, is the interaction between the magnetic moment and the

field of the crystal due to the surrounding (magnetically inactive) mole-

cules or ions. This tends to favor one of the possible axes of orientation

of the magnetic moment, giving it a lower energy than the others. How-
ever, the crystalline field never distinguishes between the two possible

directions along this axis, that is, it always leaves 2 of the 2j + 1 states

with the same energy. As a result, if this perturbation alone were

present the entropy at 0°K. would be R In 2. There remains the true

magnetic interaction which tends to line up all the spins in the sam^
direction along the axis favored b^'- the crj^stal field, and which reduce^

the entropy at 0®K. to zero. \

This magnetic interaction should presumably be calculable by using\

the equations of section 15j for ferromagnetism with the interaction •

constant a set equal to 4ir/3. The substance would then have a Curie

temperature, given by equation (42) with a = 4ir/3. There are some
theoretical reasons for being skeptical of this value of a, but experimental

evidence does exist indicating that some paramagnetic substances be-

come ferromagnetic at the lowest temperatures reached.

The actual temperatures obtained are somewhat difficult to deter-

mine. One might, for instance, measure the magnetic susceptibility

in a very weak magnetic field, equation (27), and attempt to use Curie’s

law to determine the temperature. However, marked deviations from

(27) are to be expected at these low temperatures. This method, how-

ever, is used to determine a qualitative temperature scale, the T* scale.

By experiment, then, one observes that adiabatic demagnetization from

the same initial temperature 7,*, but from different applied fields 3C,

results in different end temperatures T*, on this scale. In short, one

can correlate the magnetic field 3C used in the cooling with the final

qualitative temperature T*, always starting from the same initial

temperature.

In order to determine the thermodynamic temperature T as a function

of T* one proceeds as follows. The entropy decrease at Ti in going

from zero magnetic field to the field JC may be measured by the heat

evolved or calculated exactly by equations given later in this section,

since at this relatively high temperature, l^K., the perturbing influences

already discussed play no role. After the adiabatic removal of the field,

the amount by which the entropy is below that at Ti is then known in

terms of the qualitative scale T*. One knows, then, 5 as a function
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of r*, and in particular one knows (BS/dT*)vx ^ a function of T*,

at zero field.

The next measurement is that of heat capacity, as a function of this

qualitative temperature scale T*. This is best accomplished by deter-

mining the rate of heating (on a T* scale) as the material absorbs y rays

of known intensity. One then knows (BE/dT*)Y^x. at zero field, as a
function of T*, From the thermodynamic relationship

(d»^)v.3C =* y

one now finds the true temperature T as function of T* by

T as

The entropy Sk, at a given field, due to the orientations of the ions,

may be readily calculated. It is, from equation (6. 26^,

(15.44) SK^R^aiTlnQx),

per gram atom of magnetically active ions, and Qx is the sum

(15. 45) Qx
m-+j

m«-j

Carrying out the differentiation one finds

Sx = /? In Qx “

“ “
^tfX/kT

m.~j kT
“ +j

2^
^xagfiX,/kT

—

j

The fraction is just XJi/kT, as is seen by comparison with (34), which is

(equation 37): (jj;/33C/fc7’)fij(jj//JX/&7’). By the same method em-

ployed to obtain (37) it is seen that

(15. 46) In Qk = In [e(i+V2)««c/tr _
- In

i+h 1 . ..n
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Using this in (45), one obtains

(15. 48) Sx = R j^ln sinh 2
/^
~ In sinh - 2/fij(2

/)J

•

Sjc varies from /If In (2j + 1) at y = 0 to zero as y approaches infinity.

This function then represents the dependence of the entropy on the

magnetic field 3C at constant temperature.

161. Thermodynamic Equations in Electric Fields

Throughout this chapter, up to the last section, statistical mechanics

has been employed solely by the use of the Boltzmann factor to

weight the various orientations of the molecules, atoms, and ions in

order to ascertain the total electric and magnetic polarization. Only in

the last section was a common thermod3'namic function, N, calculateq.

This was chiefly occasioned by the fact that the thermodynamics of

materials in magnetic and electric fields is not a familiar subject.

In previous chapters, the experimental properties of the S3^stems

treated might have been calculated without explicit use of the word
thermodynamics, or explicit naming of the various functions which occur

and are also common to the general thermod^mamic treatment.

The material of this chapter might have been presented by first

developing the equations for the thermodynamic properties of macro-

scopic systems in electric and magnetic fields and subsequently cal-

culating the thermodynamic functions by statistical mechanics. This

method will be indicated here.

In order to illustrate, rather than to prove, the thermodynamic

equations for a system under the influence of an electric field, a simple

plate condenser will be considered, in which all linear dimensions of the

plates are large compared to their distance apart.

Two conducting parallel plates of area A each, at a distance I apart in

vacuum, form a condenser of capacity

(16. 49) C = i
V M

the ratio of the charge on the plates, to the voltage V between

them, is C,

The electrical work of charging the plates gives the free energy increase

as a function of as

(15. 50)
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The electrical displacement 3> between the plates is

(15.61) SD = 4ir-7 = 4ir^. I

A V

where in the right-hand expression the volume, V — Al, o( the field

between the plates is introduced.

The field 6 is

(15. 52)
/

which is equal to when no material is placed between the condenser

plates, that is, D = 8 in vacuum.

The work (50) may be rewritten as

V V
(15. 53) ^ = :r I

4ir«/o

Of course the final form of (53) and (50) agree if relation (51) is used.

Equation (51) for ID and (52) for 8 are both valid if a material of

dielectric constant € is introduced betwee*n th(^ plates of the condenser.

Howevei, the capacity is now

(15. 49')
4wl

so that

(15. 54) 8 = D.
6

The field 6 and displacement ID are not equal in a material of dielectric

constant e differing from unity.

The work of charging the condenser is .still / Dd**', which may be

written

(15. 53') L 5!

Stt 6

V
8D.

If the process is carried out at constant temperature and pre.ssure the

work done on the system determines its iiicrea.s(‘ in free energy, I

.

One now makes the distinction that the iree energy of tho Jielfi (and

its energ>% since the entropy of an electric field in vacuum is zi-ro) is still

given by (53), and the difference between (53) and (53') lies in the free
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energy change of the material (at constant temperature) as the field is

applied. For AF, the change in free energy of the material, as a function

of the electrical displacement D, one has

06.55)

It was assumed, in integrating (53^), that € was actually a constant.

This method was employed since the equations for a condenser in terms

of € are more familiar than those in terms of the polarization.

One may proceed somewhat more generally. The application of the

charge ^ to the plates induces a polarization P in the material between

them. The dimensions of polarization are dipole moment per u^it

volume, that is, charge times (vector) length in the direction normal to

the plates divided by volume. P has therefore the same dimensions ^
6 or a). This polarization in the material brings an induced charge df

opposite sign up to the plates, partially neutralizing the applied charge

and the field 8 is reduced to

(15. 56)

The use of the definition (8) of c by € — 1 = 4irP/8 is seen to result in

(54) that 8 = a)/c.

The voltage V produced on the plates is 1) = 8Z, so that the work of

charging SV is, as always, given by (53) as (F/4ir) ^8 dfSD. Using

(56) for 8 one has

(16. 53") w = ^ f S)'dS>' -r r PdS)'.
4t*/o

The first term is the work necessary to produce the field in vacuum.

The second term is the electrical work done on the material by the field.

Equation (53^^) assumes constant polarization P and displacement S) at

any time in the total volume V. A more general equation would involve

a double integration, that is, one over the volume in which SD and P are

functions of position.

The equation for the change of free energy, P, of the material at con-

stant temperature and pressure is

(15. 57) (dF)r^ - -VP(dS))rj>,
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It is to be noted that if a dielectric constant exists, that is, if P is

always proportional to €, as is normally the case, P dD and D dP are

equal and may be used interchangeably.

16m. The Calculation of F in a Field

If one now wishes to calculate the free energy F for a gas, the Hamil-
tonian or energy of each molecule must be expressed as a function of the

electrical displacement SD (which gives the effect of the true charges on

the plates of the condenser) plus terms due to the interaction of the mole-

cules. The interaction energy of the molecules will be different in the

presence of the field than in its absence, since the field tends to orient

the permanent dipoles in one direction.

If one wishes to obtain an equation equivalent to (23) in which the

Lorentz-Lorenz force has been taken into account, the statistical treat-

ment must include the interaction between the molecules, which are

therefore not independent, and the method of calculation for the perfect

gas may not be rigorously employed.

One may, however, use a rather illo^cal method which leads to almost

the correct results. In this it is simply assumed that the averaging over

the interaction between the molecules leads to equation (22) for the

local electrical force acting on one molecule. The method is, then,

logically no whit superior to that used in section 15g, indeed somewhat
inferior, but will be followed here to demonstrate the use of equation (57).

It is first necessary to investigate the effect of the electric force

on the energy of the molecule due to the polarization term a. It. can

be shown that the energy change in the molecule due to this term is

(15. 58)

This energy is made up of two terms of opposite sign ; one, the electri-

cal energy in the field, is — the second is the internal potential

energy of the molecule, which is 4- faff The electrical energy is just

— p»ff, since the induced dipole is directed along the field, and from

(10) p,* = aSF, so that one finds this energy to be — The increased

internal potential energy of the molecule is due to a restoring force /
tending to keep the positive and negative charges ze and —ze from being

displaced. The displacement I of their centers is I = ^i/ze = a^/ze

when the electrical force tending to pull them apart, which must be

balanced by/, is zeSF. Using/ * — zeff, dl = (a/zc) dSF, and integrating

Jf dl = J d5^ =

one obtains the internal potential as half the negative of the electrical

energy.
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One may therefore write for the potential energy of the single mole-

cule in the held ^ the equation

(15. 59) u = — JFpo cos $ —

Equation (59) is satisfactory enough. The difficulty which arises is

only what to substitute for the electrical force SF.

If the electrical displacement 3) is substituted for ^ one neglects

entirely the interaction between the molecules, not only that due to the

Lorentz-Lorenz force making 8ioc. different from 6, (22), but also the sur-

face polarization which accounts for the difference between the elec-

trical field S and the displacement 3). Logically one should use ID for

J in (59) and add interaction terms between the dipoles of the molecules.

We shall adopt an easy way out which leads to approximately corrupt

results.
\

Since from (56) 8 = SD — 4irP, and from (22) 8ioc. = 8 + 4irP/3,

we find 8ioc.
= 3) — 8irP/3. The correction term — 8irP/3 represents

the averaged contribution to the electrical force acting on one molecule

due to the others. This must be halved, since it is a mutual force acting

between two molecules, and we may approximately account for it by

assigning half the term to each molecule, writing

(15. 60) (F = ao - ^ P.
o

It is now a question of straight substitution into familiar equations to

arrive at the equivalent of equation (23). The potential u m (59) is a

function of the angle 0 alone. In calculating the classical factor of the

parlil ion function Q due to the angle for the molecule, one has, withoutan

electric field, onlv the integral over the volume element I ^ sin ^ = 1.

•/q

One must now replace this by

(15. 01) f ^ sin^e

In this Off gives the factor of the partition function Q affected by the

field
,
and normalized in such a way that Off = 1 when = 0.

The additional term in the free energy F due to the electric field is

—NkT In 0sr> so that

(15. 62) F = Fo- NkT In Ojf,

where Fq is the free energy in zero field.
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Substituting (59) for u into (61) for 0,, it is seen that, except for the
factor e^/***" which does not contain 0, the integral is that already
evaluated in equation (4) and

(15.63) = sinhf?^')
Poll \kT/

Using this in (62),

(15.64) +

There remains still a considerable amount of juggling to arrive at an

equation for the dielectric constant. One uses (57) to find the polariza-

tion P = —{dF/dS:>)T^p/V, with (60) for 5 in (64). The dielectric

constant 6 is defined by (8) as € — 1 — 47rP/6, which with (54) that

8 = D /€ gives P/lD = (e — l)/4ir€. Using this in (60)

(15.65)

With (57) and (64)

2c + 1

3e

(15. 66)
\_

V

djf

dSD

is obtained. Finally, noting that (2e + 1)* = 3c (e + 2) + (e — 1)*,

so that (2c + l)®/9e® = (e + 2)/3c + (c — l)®/9e^, and neglecting

(c — 1)* as a second-order correction, one arrives at (23) by using

(15. 23)
P
X> 4irc FL“'^3ifc7’J 3c

e-1 4vAT 1^1
c-l-2 3 vL“'^3jfcrJ'

The method used in this section is rather awkward. Actually the

calculation of the behavior in electric fields is one of the few examples in

which the statistical method is applied most easily without following an

essentially thermodynamic method. Of course the development in
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section 15g is also by no means rigorous, and as far as the authors are

aware there exists no strict statistical method by which equation (23)

has been derived.

A careful and completely satisfactory method would use the electrical

displacement D for CF in (59), and, with the equations for a system of

dependent particles, insert the interaction between the electric dipoles

as an additional term in the Hamiltonian.



CHAPTER 16

DEGENERATE GASES

(a) Introduction, (b) Definition of Black-Body Radiation, ^c) The

Quantum States of Radiation, (d) The Planck Black-Body Distribution

I^w. (e) The Thermodynamic Functions of the Radiation Field, (f)

The Degenerate Fermi-Dirac Gas at Zero Temperature, (g) The Integrals

Occurring in the Equations for the Fermi-Dirac Gas. (h) The Thermo-

dynamic Functions of a Degenerate Fermi-Dirac Gas. (i) Electrons in

Metals, (j) The Richardson Effect, (k) Approximate Calculation of the

Heat and ^ectrical Conductivity of Metals. (1) The Maxwell-Boltzmann

Collision Equation and Its Application to Electrons in Metals, (m) Elec-

trical and Heat Conductivity and the Thermoelectric Effect, (n) Liquid

Helium II. (o) The Degenerate Bose-Einstein Gas.

16a. Introduction

In Chapters 5 and 6 the quantum-mechanical distribution function,

equations (5. 12) and (5. 13), for the number of molecules per quantum

cell

(1®- ^ ^+*i/kT^
]

was derived. In this relation Nj denotes the nnmber of particles which,

at equilibrium, are found in a region j consisting of Cj cells, or quantum

states of one particle, the energies of which lie between €j and tj +
Aj-e. The parameter a is determined by the condition that the total

numberN of particles in the system is fixed, that is, that summed
i

over all regions j, must be equal to N.

Equation (1) is applicable to all systems composed of mechanically

independent particles'. The minus sign in (1) is to be used if the par-

ticles have S3mimetric eigenfunctions, in which case they are said to

obey Bose-Einstein statistics. The plus sign must be used if the

particles have antisymmetric eigenfunctions, in which case they are said

to obey Fermi-Dirac statistics. Which case prevails for a given kind

of particle was discussed in section 2k.

In the treatment of perfect gases. Chapters 5 to 9, the distribution

function (1) was always modified by omistion of the unity in the denom-

inator. The difference for the two kmds of systems then disappears,
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and classical or Boltzmann statistics is obtained. This approximation

can certainly be made if is large, or Nj/Cj C 1, for all regions j. The
parameter a was determined for monatomic gases by setting = N,

3

with neglect of the unity in the denominator. The result,

fl6. 2)
/2vmkT\

XhT')
3/2 Y— = 0.02t}fl

j^jZ/2rp5f2

PMm7

was found to justify, a posteriori^ the neglect introduced. In (2), m is

the mass per atom, M the atomic weight, and g the multiplicity of the

ground level in one atom. Even for helium at one atmosphere and at

its boiling point, T = 4.2°K., c® = 7.5. Great molecular weight, low

density, and high temperature all favor large values of a. For all ordii

nary chemical gases the assumption of large values of e“ is well justified .\

There exist, however, three familiar systems which may, with varying
\

degrees of accuracy, be treated as perfect gases, but for which c® is not

large. These arc the cases of radiation, of electrons in metals, and of

liquid helium at very low temperature. For these three systems the

unity in the denominator of (1) may not be neglecied and the full

quantum-mechanical formula must be used. Systems for >vhich this

is the case arc called degenerate (entartet).

The radiation contained in an enclosed space surrounded by walls of

a fixed t(*mperature T is referred to as black-body radiation. The
photons which compose this radiation arc strictly independent of one

another in the mechanical sense. They therefore make up a truly per-

fect gas. Howx^ver, the equivalent of mass, m = hv/c^, is small, and the

density, or number of particles per unit volume, at ordinary tempera-

tures, is large. The number of photons per cell is considerable, and the

deviations from classical behavior arc very appreciable.

The treatment of this system differs from that of an ordinary per-

fect gas in two respects. The total number of photons in a given

volume at equilibrium is not constant, but a function of temperature

alone. The number of cells Cj depends on the energy differently in a

photon gas than it does for molecules of finite rest mass.

The calculations will be made in sections 16b, c, d, and e. Photons

obey the Bose-Einstein statistics, and the minus sign must be used in

equation (1). Since this gas is the only truly perfect gas at all densities

in w'hich interactions between the particles are actually zero, the equa-

tions derived are exact. The treatment leads to the Planck black-body

distribution laAV for the energy density as a function of frequency.

Drude, in 1900, suggested that the electrical conduction and the very
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high heat conductivity of metals might be explained by assuming them
to contain a gas

”
of free electrons. The theory was partially suc-

cessful but failed chiefly in that the observed heat capacity of metals did

not include the classically expected Zk/2 per electron.

In 1928 Sommerfeld* and his coworkers of the theoretical seminar

published a series of papers in which it was shown that, if account was
taken of the fact that the electrons of the gas must obey the Fermi-Dirac

statistics, the observed phenomena could be accounted for satisfactorily.

Owing to their small masses, and the comparatively high densities of

particles in the crystalline metal, the deviations from cla^ical behavior

are marked.

The attempt to treat the electrons as independent, and moving within

the metal as if in a field-free box, is, of course, highly approximate.

Unlike the application to radiation, the equations derived by this

method have only approximate validity for electrons in metals.

Liquid helium at low pressures does not freeze as the absolute zero

of temperature is approached. Instead, there occurs a transition to a

se(fond liquid phase, called liquid helium II, which displays very curious

properties. Londonf has shown that this strange behavior is at least

partly due to deviation from classical statistics. Helium atoms form a

Bosc-Einstein system, and at the temperature in question, below 2®K.,

and at the high density of the liquid, the neglect of the minus one in

equation (1) would certainly be unjustified.

London attempts to appro.\imate the properties of the liquid by

treating part of the atoms like electrons in a metal; these atoms arc

assumed to behave like the independent atoms of a gas constrained to

remain in the volume of the liquid.

In this chapter the equations for radiation and for Fermi-Dirac and

Bose-Einstein gases at low temperatures will be developed. The relation

between the properties of the two types of gases and those of electrons

in metals and liquid helium, respectively, will be discussed.

16b. Definition of Black-Body Radiation

It is an everj''day experience that a solid body, if heated, emits light,

the intensity and color of which change with temperature. At any

one temperature, the intensity and spectral distribution of the emitted

radiation is a characteristic of the body, which could be determined

theoretically only by a detailed investigation of the process of light

emission. Statistical calculations, how^ever, permit one to deduce the

* A. Sommerfeld, Z. Physik^ 47, 1 (1928), and in the same volume, W. V. Houston,

page 33; Carl Eckart, page 38; A. Sommerfeld, page 43.

t F. London, J. Phya. Chem., 43, 49 (1939).
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energy density at different frequencies of the radiation which is in

equilibrium with the body.

The application of the second law of thennod3mamics to radiation

processes enables one to derive the fact that a body capable of emitting

light of a certain frequency must also be capable of absorbing it, and

furthermore that the radiation with which the body is in equilibrium,

which is described by the intensity of radiation of different frequencies,

is a function of the temperature only, and independent of the body in

question. This will be demonstrated here.

We wish to introduce the device of a box with perfectly reflecting

walls, that is, with walls which neither emit nor absorb radiation, light

contained in this box is then effectively insulated from the outside; if

the box is otherwise empty neither intensity nor frequency distribution

changes with time. In this box two different objects, a and 6, ar^

placed, and the temperature of both is maintained at the same value T\

Between the objects, dividing the box into two unconnected parts, a\

screen is introduced, which has the property of perfectly reflecting light

of all frequencies except one, v, for which it is transparent. Although this

is certainly an idealizing assumption, in practice screens could be found

which approximate the qualities stipulated here to a certain degree.

If either one of the objects a or 6 were alone in the box it would emit

and absorb radiation until it comes to equilibrium, that is, until the

intensity of light surrounding it becomes so high that it absorbs as much
light of each frequency as it emits. Let us assume that the density of

light of frequency v in equilibrium with the bodies was higher for object a

than for 6. If now the two objects are separated by the screen, trans-

parent for this frequency v only, each body tends to create the intensity

of light in its surroundings with which it is in equilibrium. There would

be a flow of light through the screen from side a to side b. Since this

would decrease the density of light on the side a, the body a would emit

more energy than it absorbs, whereas the converse would be true for b.

The effect would be a net flow of energy between two objects at the

same temperature, without the intervention of work, a result in disagree-

ment with the second law of thermodynamics.

It follows that the density of light of each frequency must be the same
for the radiation in equilibrium with any two bodies a and b at the same

temperature, independently of the nature of the objects. The energy

per unit volume of light of frequencies between v and r H- Ar in equilib-

rium with a body of temperature T shall be termed U(y,T) Ap. We
have reached the concluinon that U(p,T) is a universal function of

frequency and temperature alone.

A body which absorbs all the light falling on it is called black. The
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energy of radiation absorbed per second by such a body is easily cal-

culated from the radiation in equilibrium with it. Of the light of

frequency v, a fraction d£2/4T has a direction located in one solid angle

dQ. An element of surface is struck, in the time interval dt, by that

fraction of the light contained within the hemisphere of radius cdt,

which is directed towards it. c, the velocity of light, is independent of

the frequency. The energy arriving per unit time, for each frequency,

is therefore simply proportional to The proportionality con-

stant, calculated in the same way as for molecules hitting a wall, is

c/4 for unit area and unit time. For a black surface all this energy is

absorbed, and the energy emitted per second, unit area, and frequency

range Ar, must be the same, namely, (c/4)l7(i^,r) Av, For this reason

the function U{v,T) is called the black-body distribution function.

No real bodies are truly black for all frequencies. One can conclude,

however, that, if r, signifies the reflection coefficient for the frequenc}^

V at the temperature T, i.e. (I — r„) the fraction absorbed, of the light

of frequency v striking the surface, the emission from the surface is

(1 — r^) times the emission from a black body at the same temperature.

This is known as Kirchhoff’s law. The intensity of radiation emitted

by a black body represents the upper limit attainable from any surface

of a given temperature.

The function U{v,T) might be determined by calculating the rate of

emission from a black body. Since, however, U{v,T) signifies the

density of light in equilibrium with any body at the temperature T, it

must be an inherent property of the radiation field itself and subject to

a simpler statistical derivation.

This is undertaken in the following manner. One considers an

amount of radiational energy E contained in a box of volume V with

perfectly reflecting walls. One calculates the most probable distribution

of the energy over the various frequencies, namely, that distribution

for which the entropy of the radiation has the maximum value. The

resultant spectral distribution will be the black-body radiation function.

In following this procedure we must take account of the quantized

nature of the light, the fact that radiational energy of the frequency v

can occur only in integer quanta of energy hv. The task is then the

calculation of the most probable distribution of the light quanta over

the frequency ranges, subject to the condition that the total energy is

fixed. The problem becomes rather similar to that of calculating the

distribution of molecules of a perfect gas over the ranges of energy. An

important difference arises from the fact that the total number of photons

is not prescribed.

In the calculations for the perfect gas one always assumes tacitly that
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collisions take place between the otherwise independent atoms to bring

about the equilibrium distribution. The light quanta, on the other

hand, are strictly independent, and do not collide. To attain equilib-

rium one must assume the introduction, into the box, of a minute black

dust particle, of negligible heat capacity, which by emission and absorp-

tion serves as a catalyst in converting photons of one frequency into

others, with conservation of energy but without conservation of their

number.

16c. The Quantum States of Radiation

In a closed box, with perfectly reflecting walls, the boundary con-

ditions, deducible from Maxwell’s equations, demand that only certain

definite standing waves of particular wavelengths and directions of

propagation can be contained in the space. If, for simplicity, the b^
is assumed to be cubic, of side length Z, volume V = Z^, the vector \,

whose direction is that of propagation, and whose magnitude is th^

wavelength, must have the components •

(16. 3)

where k^, ky, k« may be any positive integers. The wave number, w,

for such a wave is given by

(16.4) = ^ = + +

and the energy of one photon in it, « = Av = Ac«, by

(16. 5) e = I (14 +

Comparison with the quantization of the waves of material particles

in a box, section 2g, shows that the quantum condition on the wave-

length is the same in both cases. The dependence of energy on X, and

therefore on the quantum numbers k^^, ky, k*, is quite different, however.

The next task is that of detemumng the number of standing waves,

or quantum states of photons, C(p) Ay, whose frequency lies between y

and y + Ay, By introducing the volume, V = Z®, the magnitude k of

the vector (k,, ky, k«) is related to the frequency by

oyi/s

(16. 6) k = (I4 + = I-.

c

The number of permisable wavelengths, that is, of positive integer
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values of ky and kc between k and k + Ak, is, just as stated in

section 2i, one-eighth the volume of a spherical shell of radius k and
thickness Ak, namely,

— k^ Ak.
8

The number of k values in the frequency range Ak is obtained from this

by expressing k in terms of v with the help of (6). To find CM Au

the result has to be multiplied by 2, since each wave described by the

vector X may still have two independent directions of polarization. One
obtains

(16. 7) CM Ap =

This equation is analogous to equation (2. 34) or (5. 2) for a monatomic

gas.

A quantum state of the complete radiation field is determined by

giving the number of photons in each monochromatic standing wave

or cell.”

16d. The Planck Black-Body Distribution Law
The frequency scale, running from zero to infinity, will be divided

into regions in such a way that the jt\i interval runs from vj to vj + Ajv,

The number of standing waves whose frequency lies within the jth range

will be denoted by Cj.

The numbers, Nj^ of photons in the quantum states of each region

determine a spectral distribution of the radiation. The total energy

of the system, in this distribution, is given by

(16. 8) K = IlhvjNj
j

and will be kept constant.

The entropy S of the radiation field in the distribution is equal to

k times the logarithm of the number of quantum states of the radiation

field which conform with the distribution. The number of quantum

states is given by the number of ways in which, for each region j, num-

bers of photons in each of tlu* Cj cells can be chosen such that their sum

is Njy or, in other words, thc> number of ways in which A'y identical

objects may be placed in Cj different cells. is the sum over all regions

of the entropy of each region, N — according to equa-

tion (5. 8), is given by ^

(16. 9) = A- {C, In + Nj In
(

1 + y
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The most probable distribution is that for which S is a maximum,
subject to condition (8) that the total energy be kept constant. It is

calculated with the method of undetermined multipliers, Appendix AVI,
by the condition

In (10) the parameter kfi is equal to {dS/dE)y — l/T.

From (10) one obtain^ the equation determining the equilibrium num-
ber of photons for each region as

(16. 11) ?

Cj ~ 1

In contrast to the calculation for the perfect gas, owing to the laekjuf

conservation of numbers of photons, only one condition, that of constant

energy, restricts the maximum of S. C^-orrespondingly, only one unde-

termined multiplier jS = l/kT occurs. For molecules the condition

ZNi = N introduces a second parameter a. Equation (11) differs

i

from the distribution function (1) for material gases only in the fact

that a = 0.

The dependence of Cy on the frequency, or energj% of the region

brings in a further difference between photon and material gas. Substi-

tution of (7) for Cj and of N (v) Av for Nj leads to

(16. 12) N{.) A. = SrV -J _ \

for the equilibrium number of photons of frequencies betw^een v and

V -h Av.

The density of energy U{v) Av, or energy per unit volume, of radia-

tion of frequencies between v and v -h Av^ is found by multiplying the

number of photons per unit volume, N{v) Av/V, in the frequency range

Ay, by the energy of each photon, hv. The result,

(16. 13) U(v) = ^iV(v) = gA./tr _

is known as the Planck black-body distribution law.

If hv/kT is small, which it is for very low frequencies at any given

temperature, and for any given frequency range- at sufficiently high

temperature, one may develop e*’’^**' — Is hv/kT, and one obtains

U(v)^^kT {hv/kT
c

(16. 13')
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Equation (13') was first derived by Lord Rayleigh on the basis of purely

classical statistical arguments. Rayleigh used the amplitudes of the

standing waves as the normal coordinates of the **
ether ” composing

the radiation field. Equation (7) then gives the number of vibrational

degrees of freedom whose frequency lies between v and v + Av, Since

the average energy for each vibrational degree of freedom in classical

statistics is kT, equation (13') is obtained immediately. If, instead

of kTj the average energy of a quantized oscillator is used (equation

7. 21 divided by No), — 1), one arrives at the correct equa-

tion (13) instead of (13').

Rayleigh also noticed the obvious shortcoming of the classical formula
(13'): the radiation density at increasing frequency tends to infinity

at any temperature— a prediction which is obviously absurd.

Another approximation to (13) is obtained by applying to the photon
gas the statistical methods for a classical Boltzmann gas, instead of for

an Einstein-Bose gas. The calculation yields Nj/Cj = and
one arrives at

(16. 13") U{v) =

It is seen that the correct equation (13) becomes asymptotically equal

to (13") for hv/kT» 1, N{v)/C{v) 1, low density of photons in the

phase space. Equation (13") was proposed by Wien, not on any
theoretical basis, but simply as giving agreement with the observed

spectral distribution for high frequencies.

Historically, equation (13) was first given by Planck as an inter-

polation between the Rayleigh distribution law (13'), which had been

experimentally verified for low frequencies, and the Wien equation,

valid for the opposite extreme. The universal constant A entered into

physics for the first time through this empirical equation. Planck then

showed that the average energy of any material oscillator, in equilibrium

with the radiation field, and therefore in any temperature equilibrium,

must be the same as that of one of the ether vibrations, namely given

by Ay/(c**'^*^ — 1). Finally, he saw that this could be explained by

the famous quantum hypothesis that an oscillator of frequency v can

possess energy values of nhv only where n is any integer, and where each

value has the same a priori probability. This postulate was the birth

of the quantum concept.

For a fixed temperature, function (13), plotted against v, starts at

zero at V = 0 like a quadratic parabola. It rises to a maximum and ap-

proaches zero exponentially as v goes to infinity. The area under the

curve, which is equal to the total energy density, U, of the radiation
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field, 18 finite. The distribution function has one property, which it

shares with (13^) and (13'^), and which was derived by thennodynam>

ical considerations before the exact form of the bIack4)ody radiation

fcnmula was known. It can, namely, be written as times a function

of v/T, or, which is equivalmt, in t^ form U{v) — T*f(v/T). From
this alone it follows that the maximum of the spectral distribution,

obtained by equating to aero the first differential of U(v,T) with respect

to r, is proportional to T. As the tonperature increases, the nm.»ifnnin

shifts to idgher frequencies. The haght at the maximum is propor-

tional to T*; and the area under the curve, the total energy, is propor-

tional to T*.

16e. The Thennodynamic Functions oi tiie Radiation Field

The total energy per imit volume, or energy denrity, of a radiation

field is obtcdned by integrating (13) over all frequencies from serai to

infinity,
\

U
8vk f* K* ^ 8rh/kT\* P* (hv/kT? ,/hp\'

- 1
* - Jo .‘'•’•-/W'

In the expresrion on the right-hand side the definite integral is simply

a dimenfflonless numerical coefficient. It is evaluated easiest by expand-

ing the denominator.

1

e*"/**’ - 1
Ee-
n-l

r^nkrlkT

If the new integration variable u == hv/kT is introduced, with the fact

J

aQO

0
e "^du B 6/n^, the definite integral is found to have the value

u* E e-“dttX B-1

GO I

n-in

The sum of the inverse fourth power over all integers is equal to t^/90.

Using this result, one finds

(16. 14)
8i^ (kT)*

16 (Ac)®

for the energy density of black-body radiation at the temperature T.

The entropy is determined by inserting the result (11):

- 1 ,

hv

kT*

and I + ^ (1 _

Ci/Ni - e**''**’
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into the equation (9) for Sj. With (7) for Cj *= C(i») Ar one obtains

“ X '7’^ In (1 - e-*'/***) +Y *•

The second term is UV/T. By introducing, as before, the dimentionless

integration variable u » h»/kT, the first tenn is seen to be

-8rFt «* In (1 - e"*) du.

The definite integral is evaluated by expanding

In (1 - e-“) - - £ ie-“,
B-in

j

^QO

du = 2/n®,
0

j

r»oo ^00 00 1 00 1 -4
«* In (1 - e-“)d« - - /

«* £ - - 2E T « -

As a result the equation for the entropy density

a
S

V
8^/m»
45 \hc)

9

or, with (14),

(16. 16)
^^41/ 32»* (kT)* 1

F ~
3 T "

45 (Ac)® T*

is obtained.

The Helmholts free energy, or work function A ^ E — TS, for radia-

tion is

(16. 16) A -*VV-TS
8t» (kT)*

45 (Ac)®

’

The radiation pressure may be obtiuned by the usual thermodsmamic

relationship.

(16. 17)
/^\ 8ir* ikT)*

\dV/T 3 45 (Ac)®

The free energy F is

(16. 18) f - A -H i»F - 0.
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This result is not surprising. In Chapter 6 it was found that the

constant a introduced into the expression for iVy/Cy as calculated by the

method of undetermined multipliers was alwa3rB given by a — — ;i/A;!r,

where m ** F/N the chemical potential. In this chapter we find that
a is zero, and correspondingly in (18) the free energy F for radiation in

temperature equilibrium is always zero.

16f. The Degenerate Fenni-Dirac Gas at Zero Temperature
The properties of metalSj especially their electrical conductivity, may

be rather satisfactorily explained by assuming that metals contain a
perfect gas of electrons. The physical reasons which justify this

assumption, and the extent to which the deductions drawn from such a
picture may be relied upon, will be discussed in some detail in section 16i.

At present we wish to focus attention on the results derived arising

from that assumption. \

If each metal atom contributes one, or as many electrons as its valency,

to the electron gas, the density of particles in the gas is very high. Thb
molal volume V of the electron gas is the atomic volume of the metal
divided by a small integer. Atomic volumes of metals are of the order

of 10 cc.

Electrons obey Fermi-Dirac statistics. The distribution function is

therefore given by

(16. 19)
Ni 1

Cy 1

The classical distribution function is that in which the unity in the

denominator of this equation is omitted. The temperature above which

this neglect is justified is determined by the condition that —iiIkT be

considerably larger than unity. Evaluation of this quantity with

omission of the unity leads to -‘nlkT = In [0.000634Af®^* from

equation (2). If the electron atomic weight M ~ 1/1840, and V »
10 cm® is inserted, --lilkT = In [8 X 10“®r®^®]. This shows that the

classical equation could be applied successfully only above 10® degrees, a

temperature for which no metal is solid. At room temperature the

classical distribution function is not even suitable as a starting point for

an approximate calculation.

In view of this it is interesting to study, at first, the opposite extreme,

namely, the properties of the gas at T = 0, which gives a much better

approximation for room temperature than the classical distribution.

This calculation can be done without recourse to the distribution

function.

The lowest energy of a classical or a Bose-Einstein gas at T » 0 is
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Eo = 0. At zero temperature all particles crowd into the lowest state

and lose all kinetic energy. For a Fenni-Dirac gas this is not possible.

The particles in it are subject to the Pauli exclusion principle: no more

than one may be in one quantum state, or cell. The lowest energy of

the gas of iY particles is therefore obtained if the N cells of lowest energy

are filled with one particle in each. The energy Eo of the gas at T ** 0

is therefore different from zero.

This quantity Eq can be calculated easily. We shall designate by mo

the energy of an electron in the highest quantum state which is still filled

at T = 0. All cells of energy below mo arc occupied, all cells with

energy above mo are empty, at zero temperature. There must, then,

exist precisely N states with energy lower than or equal to mo» and this

condition is sufficient to determine mo-

The number of quantum states, C(€) Ac, of one particle, the energy of

which lies between e and c + Ac, is given by equation (5. 2) as

C(«) = 2irgV(^y
In this equation m denotes the mass of the particle, V the total volume,

and g the degeneracy of the internal ground level of the particles. For

electrons ^ — 2, owing to the two possible orientations of the spin, so

that

(

Ot„\3/2

The number of cells with energy less or equal to /uo is pven by

Since this number must be equal to iV, the total number of electrons in

the s^^tem, one obtains

or, for not the equation

(16. 21) Sm\rv)

This quantity moi the uppermost energy of the filled cells, is frequently

called the Fermi energy.

The use of (21) in (20) permits one to write an alternate form for



376 DEGENERATE GABES I8ae.l6f

C(t) which will someUmes be found convenient, namely,

3
(16.20')

It is to be noted that we define a cell by both the tranalational quantum
numbers, k,, ky, k, and the internal quantum numbers of the partide, which in

this case consist of the two spin directions. One sometimes defines a cell by
the translational quantum numbers only and says that two electrons, of oppo-

site spin, may occupy this cell. The difference, obviously, is one of nomen-

clature only.

The total energy of the JV particles in this distribution, namely, the

energy Eo of the Fermi gas at T « 0, is ^ven by

Eo = dt.

Using equations (20') and (21), and integrating, leads to

(16.22)

The average energy per electron in the Fermi gas at T 0 is of that of

the energetically biggest particle, or^ of the Fermi energy mo*

The energy po depends inversely on the mass of the particles. By
inserting form the mass of the electron, for Na Avogadro’s number, and

forV the molal volumeV in cubic centimeters of the electron gas, which

last quantity is equal to the atomic volume of the metal divided by the

number of valence electrons, one obtuns

(16. 2l') Po = d.ieeiT'*'® X 10 “ erg/molecule

» 26.00V^*^® electron volt,

ATom * 699.5\r*'®kcal.;

po/k, a temperature, has the value

Y = 301,810\r®/® "K.

SinceV is about 10 for most metals it is seen that the Fermi ener^ of an

electron gas is extremely high. In the next section it will be shown that

the thermodynamic properties of the gas above 7 = 0 can be obtained as

a power series in kT/no. A series of that type must be expected to con-

verge very rapidly, so that the behavior of the electron gas at room
temperature is not greatly different from that at T » 0.

Equation (21) shows that both the small mass and the high density of
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the electron gas favor this lugh value of po. Atoms or molecules have
massesmore tiian twothousand times that of an electron, so that thevalue

of M for a chemical Fetini-Dirac even at the same doimty, is veiy

much smaller. A development with respect to kT/ito for a chemical gas
obeying the Pauli principle would lead to a series which converges at

very low temperatures only, and at room temperature the thermody-

namic functions are radically different from those at 7* - 0, in accordance

with the discusrions of Chapters 5-8.

The same results for the electron gas at aero temperature could

have been obtained, of course, from the distribution function, (19). In

(19) the quantity a function of the temperature, is determined by
the condition that the total number of particles is fixed. At T > 0
function (19) is zero if > m(0); it is equal to 1 if cy < yi(0). The
distribution function represents, then, the state that all cells with

energy lower than yt(0) are filled, all cells with higher energy empty.

At e ii(0) the function has a discontinuity, as it drops suddenly from

unity to zero. It is seen then that the Fermi energy yio of the filled level

of highest energy is equal to the vidue m occurring in the function (19)

at T — 0. In Chapter 6 it was shown in general that the quantity yt

in the distribution function is the chemical potential which is 1/N times

the free energy F. The free energy of the electron gas at 7* » 0 is

therefore F© = We shall verify this result by direct calculation of

the various thermodynamic functions at 7* = 0.

A quantum state of the total gas is described by giving the number of

electrons in each cell. It is clear then that the distribution at T « 0,

when all cells of energy c < yi© are full, all cells with c > yi© are empty,

can be realized by one state (or, owing to the posrible small degeneracy

of the very highest level with c » yt©, by a very few states) of the total

system otdy. The entropy 5 = 1; In Q of the gas at T » 0 is therefore

practically zero since Q is equal to a small integer.

The work function A » F — 7*5 is A© » F© for the gas in the lowest

energy state. The pressure of the gas, P » — (dA/dF)r, is obtained

by using (22) for F© = A©

(16. 23) P©
dF©w 3 dyi© 2 N 2 F©

It is seen that the relation P©F = -f-F© is precisely the same as that for

the classical gas A difference arises here from the fact that at 7* 0

nrither P© nor F© is zero. The numerical value of yi© (2l') shows that

(16. 23') 10.04 X dyne/cm*

9.9 X 10^*'* atm.
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Remembering that V is of the order of 10 cc. for metals one finds that the

zero-point pressure in metals is very high. A gas at such high pressures

can be contained only in a very strong box. For the electron gas, the

metal itself provides this
**
box.” On account of the strong attraction

between the electrons and the remaining positive metal ions the poten-

tial energy of the electrons inside the metal is much lower than outside,

so that the electrons remain confined to the metal. The electron pres-

sure, tending to increase the volume, is balanced by the attraction

between the ions and the electrons which tend to decrease it.

The potential energy of the metal may be regarded as being made up, almost

entirely, of the electrostatic Coulomb interaction energy between the positive

ions of the lattice and the electron gas. This potential energy is negative and

varies inversely as the cube root of the molal volume V. The total energyj of

the metal, compared to that of positive ions and electrons as a dilute gas\at

0**K., is composed additively of this negative potential energy and the positive

kinetic energy Eq of equation (22). The equilibrium volume of the metal it

O'^K. will be determined by the condition tiiat (dE/&V)T»o — P — 0. It is

seen that this total pressure of the metal will be composed of two additive

terms: the negative attractive pressure due to the potential energy which

varies as and the positive repulsive Fermi pressure (23) varying as

At equilibrium the two pressures will be equal. The molal volumes and binding

energies of metals calculated this way are in fair agreement with the experimental

values.*

The free energy, P — A + PV, is, at T = 0, Fo — Eq + PqV.

Using (22) for Eq and (23) for Pq, one obtains

(16. 24) Po = fio + PoV =

in agreement with the general identification of n with F/N.

At temperatures above T = 0 the distribution function (19) must be

used for the evaluation of the thermodynamic functions. Since the

integrals cannot be evaluated in closed form, an approximation method

will be developed in the next section.

16g. The Integrals Occurring in the Equations for the Fermi-Dirac Gas
The number of electrons N(e) At in the energy range between e and

c + Ac is obtained, as a function of the temperature and volume, by
multiplying equation (20) for the number of cells, C(€) Ac, by equation

(19), thenumW of electrons per cell,

(16.26) Ar(.) = 4,y(.p)

* O. K. Riee, J. Cim. 1, 636 (1338).
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Using (20^) for C (*) thismay also be written as

(16. 250 iV(*)
3N
2^/* l’

in which /to, defined by equation (21), is the chemical potential at
7* = 0, and m the chemical potential at the temperature in question.

The integration of (25) over all values of c serves to determine /t as a

function of temperature by equating the result / iV^(c) dc to the total
*'0

number of particles N. It is to be observed from the form (250 for

JV(t) that M will necessarily result as a function of mo aod kT alone.

The energy may be determined from the equation

E = f €N(€) df.

It is seen that in general one is confronted with the problem of making
integrations of the type

(16. 26) dc,

where the function /(c) is some simple continuous function of c such as

c'^^ or c®^* and

(16. 27)
1

We have seen already that at T = 0 this function g(c) is a step func-

tion, unity for € < Mo and zero for c > mo* Also at T = 0 the value of

M = Mo is extremely high, mo/* is of the order of magnitude of 5 X 10^

to 10® °K. for most metals.

It is not to be expected that m will decrease enormously with tempera-

ture, so that at room temperature will be of the order of magnitude

of 10*, as 10“^®. The approximation method used for the

classical gases is valid only if m is negative, 6“'*^**’ greater than unity.

In this section integrals of the type (26) will be evaluated under the

assumption that m/^ 7"^ 1, and their values will be obtained in terms of

a power series in the small quantity AT/mo* The result will show, a

posteriori^ that for electrons in metals this assumption, p/kT » 1, is

justified up to temperatures above those at which the metals melt.

In order to integrate equations of the type (26) it will be necessary to

resort to a trick. Since, as we have found, c""'*^*** » KP*®, g(6), equa-

tion (27) is practically unity at c - 0, and decreases monotonously to
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«ero At * « 00 . Its derivative g^(t) ^ dg/dt is slwa3rs negative, but has

one single sharp minimum at c - Mi as long as m is positive. For
n/kT'> 1 this maximum of —g\t) is very sharp, and the function

—g'{t) is n^ligibly small for all values of c differing greatly from e » /t-

By a partial integration (26) may be transformed into an integral over

—F[t)g'{t), and because of the form of —g'{t) only the values in the

neighborhood of t = n contribute to the mtegral. The limits of inte-

gration are actually from c « 0 to e == « , but since —g\t) is practically

zero for c < 0 no great error is introduced by changing the limits of inte-

gration to minus infinity and plus infinity. With these limits the inte-

gration can be performed by developing the function F(c) as a Taylor’s

series in powers of (c — n) about the place of maximum — tr'(c).

The first and second derivatives of the function ^(c) in equation (27)

are

(16. 28) ff'(.)

and

(16. 29) g%)

dgjt)

d€

d?gU)

de*

At-nVAT
\

+ ija

~
(fcr)V“'“'*^ + 1]®

2g2(«-M)/itr

(fcr)*[e‘»^”**’ -I- If

B(r-M)/*r|g(.-M)/*r _ ij

(fcr)*[c^-'‘”*^+ 1)=*

'

The first derivative is always negative,

when
The second derivative is zero

(16. 30) _ 1 = 0, €

At € = M the function —g'ie) has a maximum, which is sharper the lower

the temperature. The negative of the slope of the originid function at

this point is greatest.

Using € == /i in (27) and (28), one finds that the value of the function

g{€) at this point is

9 (m) = h
and that of its derivative
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The logarithmic decrease in 0(c) with In c is

/dlng(€)\

\ dln€ 2 fcr‘

From this it is seen that the relative abruptness of the descent of

g{t) from almost unity to almost aero increases vrith the value of it/kT.

Fig. 16. 1. Plot of the Fermi distribution function and its derivative

for various temperatures.*

The functions g(c) and g'(t) are plotted in Fig. 16. 1 for various values

ofkT.

By partial integration of the integral / of equation (26) one finds

I = /’*/(«)9(*) d« * F(»)g(ao) - F(0)g(0) - r*F(*)g'(e) (k,
VQ •'0

where

(16. 31) F(€) = r
•/o

If fit) is not infinity at c = 0, then f’(O) and the product f*(0) g(0)

are zero. If fit) does not go exponentially to infinity with c the product

F( 00
) ^( 00

) will be zero since git) approaches zero as ^ with increas-

ing €. One may consequently write

(16. 32) I = f^rngit) dt^ -- f*F(6)g'(€) d€.

VO VO

We now transform to the new variable

(16. 33) X
kT

* Ik should be read in place of Mq everywhere in this figure.
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and develop the function F(x) as a power series of x,

where, in the old variable

(16. 34) Fix = 0) =J'fit) it,

By introducing this development into (32) one may write

(16. 35) / = -F(0) r"ff'(*) it
va

-i:^/“^»(M)f ^g'ix)ix.

The integral ot the drst term is

(16. 36) - /’V(«) * = ff(0) - ff(«) = (1 + «-'•/*»’)-« s 1.

«/o

The function g\x) is obtained by using the expression (33) for x in

(28),

(16. 37) g'ix) = -
kT (e* + 1)*

1 1

kT (e* + 1) (e- + 1)

This function is completely symmetrical in x, that is, g'ix) = g'i—x).

The function approaches zero exponentially as x approaches minus

infinity. If n/kT is large the value of the function is already neglipble

at the lower limit, x = —n/kT, of the integral in equation (35). No
error is introduced, consequently, by changing the limits of integration

of the terms in the sum of (35) to x = — « and x = + *•

We must now evaluate the integrals

/
+» ^

.00 (e* + !)(«-* + 1)^*-

From the symmetry of the denominator it is seen that the integrand is

antisymmetrical in x if n is odd, that is, it changes rign if x is replaced by
-X, and the integral is therefore zero for odd n. For even values of n
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we may integrate from *ero to infinity, and multiply by 2, mnce then the
integrand is symmetrical in x.

By developing

1

(e* + 1) (e-* + 1)

«-*

(1 + «-*)*
e-* - 2e-** + 3e-«*

00

- L (-l)“me

the integration may be performed as

(16. 38)

/
+00 jpB 00 ^oo

CO (—I-)"= —2n I 2 (neven).

Using (37) and (36) in (35), with (34) and (38) one finally arrives at

(16. 39) / = f*/(«)»(€) d« = - r*F(€)ff'(*) dt
«/o •'0

=//(.) (fc - 2 z: (fcT)®^*^’’ (m) £
«/o ii»i B«i m

The sums occurring have the numerical values

ja

(16. 40)

so that

_ £
(-1)-

.1 m‘

T

12
’ _ £

(- 1 )'

•I m'

7ir«

720'

(16.39') '-XW'*')-!*

w.-,
+ •••.

Equation (39^) will now be applied to calculate n. Using (25^) and

ZN r* *>00 >00
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one finds ibat/(c) » in this problem. The integral F(jt) is

(Sse.Ug

r/O s/o o

The derivatives are

and

Using these with (39^ in (41) one finds

(16. 42)

which determines p as a function of po &nd T.

In order to make the equation explicit in p the development

(1
+*)*'* 3^9

is used to obtain the form

and in tins p~^ » p^ [1 + (tV6) (kT/po)^ is substituted in the quad-

ratic term. In the qiuirtic term, which is the last correction, po is

nmply substituted for p. One obtains

(16. 43)

as an equation for p, the chemical potential, in terms of kT and po. po>

the chemical potential at 7* — 0, is pven in turn as a function of the

volume V by (21).

The energy E may be calculated by using the relationship that

(“•«>

from (260.
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In this mt^rBl/(() « and

d, 2
"

’ dt» 8u^i*'

80 that

is obtained.

By uinng (43) to replace n with >10,
one finds for the energy

(16. 45)
0

16h. The Thermodynamic FunctUms of a Degenerate Fermi-Dirac Gas
The chemical potential fi, equation (43), and the energy E, equation

(45), of the degenerate Fermi-Dirac gas have been obtained as power

series of the temperature, in terms of m, equation (21 ), which is a

function of the volume.

The most direct statistical method of calculating the entropy would

be to use the equation for Qj, the number of quantum states of the

r^on j as a frmction of Nf and Cj, the numbers of particles and cells,

respectively. Q,- was calculated in Chapter 5 and is given in equation

(5. 4) and its logarithm in equation (5. 9). Sj = k In Qy is the

entropy of the region, and S = £18/ gives the entropy of the whole

system in the equilibrium distribution if (19) is used for JVy/Cy.

This procedure would involve another comparatively complicated in-

tegration and will therefore be avoided.

Equation (45), givingE as a function of temperature and volume,

(16. 46)

with (21),

(16. 47) ^ ^
dV~ 3V’

is sufficient to permit the calculation of all other thermodynamic func-

tions since it has already been shown that the entropy S is lero at

r«o.
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The heat capacity at constant volume, Cy, is found by direct differen-

tiation of (46) to be

06.48) + ...].

Since numerical evaluation of (47) has shown that n^/h » SOljSlO^K.

X in which V, the molal volume of the electrons, is about ten in a

metal, one sees from (48) that Cy at room temperature is about Iflr*

times the classical value, Cy — ^Nk.

The entropy may be obtained by integration of Cy/T, with respect to

the temperature, from zero to T,

06. 49)

T L 2 VM0 / 20\mo/
^

The work function, A = E — TS, is, from (46) and (49),

The pressure P is pven by — {dA/dV)^) and with (47) in (50) one

finds

(16. 51) P
V 15^ 6\mo) 40Vmo/

2
-I- +

5 F L 12 Vw)/ 16\w,/

2 E
3 V‘

The equation PV = 2Ef3V, found at T * 0“K., equation (23), is seen

to be independent of temperature.

The heat content, H ^ E + PV, is accordingly

(16. 52) JVmo + •••

12 \Mo/ 16 \mo/
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Finally, fonning F ^ H — TS^ one finds

(16. 63) F

which is, of course, seen to be Nfx, by comparison with (43).

It is to be noted that in all the equations for the thermodynamic
properties of the gas the temperature-dependent part occurs as fcr/Mo-

Since no/k is about 10^ ^K. for the molal volumes of electrons in metals,

kT/no is about 10“® to 10“^ for ordinary temperatures. The thermo-

dynamic functions of the degenerate gas, at the concentrations con-

sidered, do not depend greatly on T. In particular the heat capacity is

almost negligible compared to that due to the vibrations of the ions

up to considerable temperatures.

16i. Electrons in Metals

Perhaps the best justification for treating metals as if they contained

a perfect gas of electrons is that obtained a posteriori by the agreement

between predictions and the observed experimental facts. This com-
parison will not be carried far in this book.

That electrons can move freely in a metal is a direct consequence of

the experimental fact that the electric current is not accompanied by
transport of the atoms composing the crystal lattice. Since the con-

ductivity of true metals decreases with increasing temperature, it is clear

that no “ activation energy ” is necessary to dislodge the electrons from

an equilibrium position of rest.

The ratio of the conductivity of heat, which is much higher in metals

than in insulators, to the conductivity of electricity, is a universal func-

tion of temperature, independent of the nature of the metal. This fact

is known as the law of Wiedemann and Franz. Obviously, this can be

explained only by attributing both phenomena to the same mechanism.

The heat conductivity of metals must therefore be due essentially to the

electrons, showing that they are able to move, even without an electric

field, and to carry kinetic energy. The treatment of these phenomena

in sections 16k-16m leads to the correct ratio between thermal and

electrical conductivity.

This freedom of motion of the electrons can be well understood on the

basis of quantum-mechanical calculations. Actually, an electron in a

metal is not free” but subject to strong and rapidly varying forces.

These forces are of two origins: namely, the interaction of the other
** valence '' or “ conduction ” electrons on the one considered, and the

attraction of the positive metal ions. The first part, the Coulomb

repulsion between electrons, e^/r, is a long-range force, varying only
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slowly with distance. The potential on one electron will therefore not

depend strongly on the instantaneous position of the others, and one

may replace it simply by its average value. This is equivalent to treat-

ing the electrons as independent, non-interacting particles, and is, in

general, not a bad assumption. However, just this simplification has to

be dropped to explain ferromagnetism, and probably this assumption is

also responsible for the failure of the present theory to predict satis-

factorily the phenomenon of superconductivity.

There remams to be discussed the attraction of the lattice of the posi-

tive metal ions on an electron. This potential is triply periodic, with

valle3rs at the lattice points and hills between them.

If the ions are close together, the potential energy of an electron at a

hill between lattice points, even if corrected for the average repulsion of

the other conduction electrons, will still be much lower than that out-

side of the metal. An electron with kinetic energy higher than that of

the hills remains inside the metal, but it will certainly not be localized^at

one ion. Instead it will move freely throughout the whole lattice.

From a semi-classical consideration, then, one would expect conduction

to occur if neighboring metal atoms are so close together that the

height of the hill of potential energy between them becomes less than

the energy of the valence electrons.

Quantum-mechanical calculations show, however, that electrons with

energies less than that of the lowest potential ridges are able to go

“through” the hills. Even these electrons are not, as in classical

mechanics, limited to stay at one ion, but can travel, and belong to the

crystal as a whole. The rate at which a particle leaks through a poten-

tial hill is higher the smaller its mass, and the more nearly its energy

approaches that of the top of the hill. The eigenfunctions of all the

electrons in this periodic potential field extend throughout the whole

lattice and do not vanish at the potential hills between the lattice

points.

It is seen, then, that this picture of electrons shared equally by all

metal atoms differs from that of a perfect gas of electrons only in that the

number of quantum states C(c) Ac, for an electron in an energy range

Ac, may be different from (20). In calculations for special cases this

can be taken into account. It is apparent, however, that an alteration

of the function C(c) will not alter the results qualitatively, as long as

C(€) remains of such a form that the energy of-the highest filled level

is of the order of magnitude of (21), and as long as C (mo) Is different from

zero, that is, as long as there are, at zero temperature, unoccupied elec-

tron levels above the filled ones. This latter condition distinguishes a

metal from an insulator. Only if there are unfilled levels available
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directly above the filled ones, can an electric field accelerate the electrons,

namely, raise them to higher quantum states.

In the neighborhood of each ion the wave functions of the metal electrons

will resemble those of the electron in the free atom. As long as the distance

between the lattice points is rather large, each metal wave function, extending

throughout the lattice, can be approximated as a sum of the atomic eigenfunc-

tions around the different lattice points, the function at each lattice point being

multiplied by a phase factor depending on the position of that point. The

different metal eigenfunctions, arising from the same atomic state, differ then

only in the numerical values of these phase factors. The phase factors for the

possible electron waves are characterized by three quantum numbers k„ ky, k.;

indeed, they have precisely the form of a standing wave, and may be obtained

from equation (2. 18) by inserting for as, y, z the position of the lattice point in

question. The numbers k,, ky, k, are again connected with the linear momentum

of the electron.

The energy of these eigenfunctions, in this approximation, is given, except

for an additive constant involving the atomic energy, by

^ r irk*
,

irky irk, "I

where /3 is some integral over the atomic eigenfunctions. For small values of

kx, ky, k* this may be developed, leading to an expression analogous to that for

the energy of free electrons and therefore to an analogous C(e), except that the

mass m is here replaced by an expression containing

Since there are only N atoms in the metal, and therefore only N lattice points,

it follows that only S different values of k*, ky, k, lead to different pha^ factors

at the lattice points, just as the number of different lattice vibrations is limited

to 3.V in the Debye theory. Owing to spin there are then 2N cells in the metal

corresponding io each undegenerate orbital electronic function of the free atom.

The total number of states is the same in the metal as in the JV free atoms of

the gas.

This separation of the single electron cells into bands of 2N cells each (includ-

ing spin states) is characteristic of the approach in terms of the non-perturbed

atomic functions. It may, however, also be derived by considering the per-

turbing effect of the periodic lattice points on the wave functions in field-free

space. In this case the band structure arises because those eigenfunctions

whose nodes occur with the same periodicity as the lattice points will be particu-

larly perturbed.

The characteristic behavior of the metal, high electrical and heat conductivity,

is due to the existence of a continuous band of unfilled cells for the electrons,

immediately above the filled levels. These unfilleil levels will be present, either

if tlie atoms contain only one valence electron (the alkalies), so that there are

S electrons for 2N cells, or if the bands due to the electronic states above those

of the valence electrons overlap those below. This, for instance, is true in the
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alkaline earths, where the p electron bands overlap the « bands, which are

filled with a pair of electrons from each atom.

In a crystal composed of rare-gas atoms, the energy of the lowest excited level

is so high that the bands originating from these levels do not overlap the filled

bands of the valence electrons. Similarly in molecular lattices, such as those of

CI2 ,
Br2 ,

O2 ,
and N2,

the first excited levels have too high an energy to lead to

bands overlapping the valence electron levels. In crystals of all these materials,

then, there exist no unfilled electron states immediately above the highest filled

state in the crystals. These crystals are not conductors and are non-metallic.

For sodium, Slater'" has undertaken a careful calculation of the

eigenfunctions of the conduction electrons, showing that they are stand-

ing waves modulated at the places of the ions. The value of the density

of states, C(€), obtained by him is surprisingly close to that of (20) j In

general, it is to be expected that the electrons of energy higher than that

of the potential maxima between the ions will not be greatly disturoed

by the periodic potential field. Consequently, the value of C{e) at the

top of the Fermi distribution, C(po), which enters most calculations, is

somewhat more trustworthy than C (e) near 6 = 0.

After this partial justification and criticism of the theory we shall

return to the simple picture that the valence electrons in a metal form a

perfect gas of independent particles. The potential energy for these

electrons inside the metal is much lower than on the outside. If the

average value of this potential in the metal is — -u, measured from zero

potential outside of the metal, it is clear that u must be considerably

greater than po? equation (21), or the electrons at the top of the band, of

kinetic energy pof would penetrate the surface and leave the metal, even

at zero temperature.

16j. The Richardson Effect

The electrons in the metal may be regarded as a gas composed of

independent particles moving in a potential energy trough with steep

walls at the surface of the metal. The value of the potential outside of

the metal may be taken as zero; the potential inside the metal is really

periodic in space, but we approximate it as being constant, and having

the value — w, per electron throughout the metal. The thermodynamic

energies, E, F, and A, etc., of section 16h are all measured from the

bottom of this potential trough, so that the choice of the potential of the

space outside of the metal as zero alters theirValues by the additive

term — «= —Nu.
Since, in any metal, the electrons do not leave the metal surface at

T *= 0, it follows that u must be greater than mo, the kinetic energy of

* J. C. Slater. Phya, /2ev., 45. 794 (1934).
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the electrons of highest energy at T « 0. As the temperature rises,

however, some of the electrons have greater kinetic energy, and at any

jfixed temperature a finite fraction of all the electrons will have kinetic

energies greater than u, sufficient to penetrate the potential barrier at

the surface and to leave the metal. This evaporation of the electron

from the metal surface is known as the Richardson effect or as thermi-

onic emission.

A direct evaluation of the rate of emission of electrons per square

centimeter of surface may be made by calculation of the numbers of

electrons striking unit surface in unit time, with sufficient component of

momentum, normal to the surface, to overcome the potential barrier.

The calculation is not difficult but will be deferred in favor of an alterna-

tive consideration which brings out more clearly how little this electron

emission depends upon the character of the metal.

At any given temperature the metal will be in equilibrium with a

definite concentration of electron gas in the space surrounding it. This

concentration, however, will depend not only on the temperature, but

also on the electrical potential of the space surromiding the metal. It is

necessary, then, that, in order to avoid complications which do not inter-

est us at present, we assume the presence of a positive ion gas of the same

electrical density as the electron gas, so that the electrical potential of

the space surrounding the metal is everywhere zero, and the potential

difference between the interior of the metal and all points in this space is

still u.
• j 4. 1

In this case the concentration of the electron gas outside the metal,

which is in equilibrium with the electrons in the metal, is simply deter-

mined by the condition that the chemical potential of this g^ be

— t/j = ju — w, the same chemical potential as that of the electrons in the

metal, when both are measured from the same zero of energy, namely,

the potential of the space surrounding the metal. Now if the electrical

potential of the space outside the metal is constant we can readily deter-

mine the number of electrons striking unit surface of metal in unit time

from the outside, and can do this by using equation (1. 38) already

calculated in Chapter 1.
, * tu

At equiUbrium the number of electrons leaving the surfa^ of the

metal, and the number entering, are necessarily equal. It follows that

we may use the number hitting from the gas outeide the metal at equilib-

rium for a calculation of the thermionic emission. However, an addi-

tional assumption is necessary before either the number of electrons

striking the surface from outside, or the number of sufficient momentum

from the inside, may be interpreted as giving the number of d^trons

leaving 1 cm.® of metallic surface per second under the conditions of
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thermionic emission. This assumption is that the reflection coeflicient

at the surface is zero. It may be that a fraction r of the electrons having

sufiicient energy to cross the surface are reflected on hitting it, and only

the fraction 1 — r of them penetrate into the space outside. The laws

of mechanics demand that exactly this same fraction, 1 — r, of the elec-

trons striking the metal from the equilibrium gas in the vacuum pene-

trate into the metal. At any rate, the numbers entering and leaving

the metal at complete equilibrium are equal, and since the number leav-

ing is not affected by the presence of the gas outside, this number will

give the thermionic current under the experimental conditions.

The negative of the chemical potential, w, or free energy per mole,

W * Now, of the electrons in the metal, measured from the electrical

potential of the space outside the metal as zero, is called the \^ork

function for electrons of the metal in question,
\

(16. 54) w = u — n, W = U - F - Now,

The chemical potential n measured from the potential — u in the metal is

given by (43). Since p varies but little with temperature, w is often

regarded as temperature independent, which, of course, is not strictly

true.

The work function w is fairly large; it is of the order of magnitude of

several volts or several tens of kilocalories. — v; is the chemical poten-

tial of the equilibrium electron gas outside the metal, and since

w/kT'> 1, the unity in the expression -|- i may be neglected

in the distribution function, and the equations for this gas may be

obtained by using the classical formulas. In short, the density of the

electron gas outside the metal is so low that in spite of the small mass

N{t)/C{jt) is small for all kinetic energies, and the gas is completely

non-degenerate.

Equation (6. 25) for the chemical potential — tt; of the gas in terms of

its pressure P,

(16. 55) —w - ^ - kT Inj^;—

1

irmkT)
'iZ-l

may be used. The electron has a spin s = J, the degeneracy 2s -|- 1 of

the lowest, and only, internal quantum level of the electron is two, so

that Oi = 2. Equation (55) may be solved explicitly for P, as

(16. 56) P = 2kT

This gives the vapor pressure of electrons outside the metal in terms of
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the work function w, assuming that the space charge in the volume which
contains the electron gas is neutraUsed.

•Uting equation (1. 38) for the number Z of gas molecules striking

unit surface in unit time,

(16. 57) Z P
>/2irmkT

the current, / = sZ, carried by the electrons may be calculated by insert-

ing P from (56) in (57), as

(16. 58)
4rem(kTf

"
A®

*

This is the Richardson* emission equation for the thermionic emission of

electrons from a metallic surface. The possible reflection coefficient, r,

being neglected, the numerical factor in front of (58) is independent of

the metal; w alone varies from metal to metal. Numerical evaluation

leads to

(16. 58') I = 120.ir*e-“/**’ amp. cm.-*

Ex{)erimentally (58') is usually used in the form

(16. 58") logio I (amp. cm."*) = 2.07968 + 2 logjo ^ ^

SO that, with the assumption that the work function is independent of

temperature, a plot of logio against l/T gives a straight line with

it;/2.303A; as the negative of the slope. If the surface area of the emitting

metal is known, the absolute current may be found, and the numerical

factor, 120.1 amp. cm.”^ in (58")i checked.

For several metals this method has given the numerical factor 60

amp. cm.“"^, just half of the value in (68')- This half value, at the time

of the experiments, was the theoretically predicted value, since at that

time the spin of the electron w^as unsuspected. It has already been

mentioned that (58) should actually be multiplied by 1 — r, with r the

(averaged) reflection coefficient. Quantum-mechanical calculations

indicate that r should be negligible for clean metal surfaces. It is

questionable whether the experimental factor of § X 120 should be inter-

preted as showing a reflection coefficient r » More probably it is

an accidental relationship, and the true explanation lies in the expected,

although small, temperature dependence of ta, due to expansion of the

* Derived by Laue and Dudunan, M. von Laue, JaMt. Badioakt. BkUnnik, U,
205 (1918); 8. Diwhman, Phya. Bn., 81, 63 (1923).
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metal lattice. Then, of coune, the slope of (58'') no longer gives w
directly.

Before leaving the subject thermionic emission, it will be shown
how, in detail, the numbers of electrons leaving the metal surface equal

the numbers entering from the equilibrium gas outside of the metal.

In the momentum range dp, dp, dp„ and unit volume, there are

(2/A*) dp, dp, dp, cells, and 4- 1J“* electrons per cell. The
number from this momentum range crosting unit surface, normal to the

s axis, per second, is (v, = p,/m),

(16. 59) * = ^ e(pl+p:+pi)/^T-M/tT + 1
^Pp

^^ e(p!+p}+p:)/2mkr-M/kT + 1
•

Only electrons whose x component of momentum is greater than

pls/2m » Uf can overcome the potential hill at the surface and escape.

The X component squared, after escape into the vacuum will be

Px9 P» ““ 2mUf so that, remembering that w ^ u — iiy (59) may be

written

(16. 59 ) ^ ^ e(p«+pj +p;)/2m*rH-ip/*r+

1

^Py

in terms of the momenta, py p, and pxv which the electron will have in

the vapor outside of the metal, fkjuation (59'), however, is just the

equation for the number of electrons in the momentum range dpxv dpy dp^

of the equilibrium gas hitting unit surface normal to the x axis in unit

time, since — u; is the chemical potential in the gas. The total number,

Z, hitting the surface is obtained by integrating (59') over all values of

Py and p» from — oo to + oo
,
and p*» from zero to infinity.

The form (58) for the Richardson effect is valuable only in so far as

it can be assumed that w is essentially temperature independent. This

temperature independence of the work function is due to the degeneracy

of the electron gas in the metal and the consequent low specific heat

of the electrons. If the gas inside of the metal were assumed to be

classical, w would contain an additive term +kT in 7^^^, so that (58)

would become

The dependence on predicted by (58) appears to be experimentally

verified.

The relation between w and the potential, u, is entirely different if



Bi|. 16.891 PHOTOELECTRIC EFFECT

the electrons in the metal are treated as a classical or, as here, a Fermi-

Dirac gas. For a classical gas, the chemical potential inside the

metal, measured from the bottom of the trough, would be negative;

ti> * tt — /4 would, consequently, be larger than the potential u. Here
it is predicted that w is several electron volts smaller than u. This can

be checked by comparison with other experiments.

If an electron, possessing kinetic energy c outside, is shot into the

metal, its energy above the bottom of the potential trough, or its kinetic

energy inside, is c + ti. Now, according to equation (2. 15), the wave-
length h/p associated with the electron motion in a constant potential

field is inversely proportional to the root of the kinetic energy. The
ratio of the wavelength of the electron outside and inside the metal,

Xo/Xi, the index of refraction of the electron wave, is correspondingly

given by \,Ai = [(« + «)/«]''*•

The electron waves, precisely as light waves, are diffracted by the

grating formed of the regular arrangement of the ions in the metal

crystal. For the diffraction at the surface the wavelength outside, Xo,

is responsible. But the diffraction effects in the interior depend on the

wavelength X{ of the electrons inside the metal. For known lattice

distances the measurements of diffraction maxima and minima due to

the space lattice enables one to calculate X{. Since €, and therefore X<»,

are directly determined from tlie known accelerating potential for the

electron, one is able, in this manner, to measure u. The difference of

the experimental values* of u and w is, according to the results of this

section, equal to the Fermi energy fi. The agreement of the order of

magnitude ofu — w with that of fio, determined from (21), is very good,

indeed so good that attempts have been made to calculate from this com-

parison the one factor in Mo which is not determined with certainty,

namely, the number of electrons which each metal atom contributes to

the electron gas. For instance, in nickel u u? is 11.6 electron volts.

One obtains agreement with Mo, calculated from (21) only by assuming

that there exist two conduction electrons per metal atom. However,

the whole picture of completely free electrons is too rough to put much
faith in these detailed considerations.

The work function w can also be determined by the photo effect. In

these experiments, light of one frequency range is shone into the metal.

The electrons are able to absorb a light quantum hv, transforming it

into kinetic energy. If an electron is raised, by this process, to a state

of energy higher than u it may be able to leave the metal. This libera-

tion of electrons under the influence of light is called the photoelectric

effect.

* H. Beihe, Ann. Phiflik, 87, 55 (1928); E. Rupsch, Uipsiger Vdrtrdge, 1930.
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Obviously, light of frequency v is capable of ejecting from the metal

only those electrons whose kinetic energy was originally larger than

hv. As long as the frequency of the incident light is less than

Wt% therefore, there are only very few electrons in the metal possessing

energies higher than +u hv > u -- w ^ n, and the photocurrent will

be effectively zero. If the frequency is increased, until hv > this

situation is completely changed. There exist now many electrons

which, by gaining the energy of one photon, arrive at a state of energy

above u, from which they can escape as photoelectrons. The photo-

current will therefore start at hv = w, the sharpness of the increase

depending on the temperature. This prediction is well corroborated by
experiment.

The details of the calculation of the photocurrent depend on jbhe

transition probability, the derivation of which is beyond the scopeiof

this book. The agreement with experiment is very satisfactory."" \

The fact that the chemical potential m measured from the potentip^l

energy — of the metal is different for different metals is responsible for

the Volta potential. If two metals are brought in contact electrons

will flow between them until the absolute chemical potentials of elec-

trons in the two metals are equal. This flow of electrons is not suf-

ficient to change the absolute density of the electrons in the metal

appreciably and therefore does not affect the values of ia, but it does

alter the electrical potential 0 of the metals. The potential energy of

the electrons in the metal, measured from the same arbitrary zero as

the electrical potential is — The chemical potential measured

from this arbitrary zero is then /la ~ in the metal a. One has, then,

for two metals

Ma — * Mb —

- 0b = *“ (Mo - Mb)-
e

The potential eneigy difference between an electron in the metal a

and in the vacuum immediately outrade of the metal surface is always

—Ua, and the electrical potential difference between the interior of the

metal and the vacuum (immediately outnde of the metallic surface) is

— ^av ‘= Ua/«> It follows that the dectrical potential in the vacuum
at the surface of two different metals is different,

^o* — ^ ~ (m6 — «»)
6

• R. H. Fowler, Phii$. S9. 45 (1931).
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^at — 06i> — -[(M6 — in) — (Mo — M«)l

Wa)
e

from (64), where Wa and wt, are the work functions of the two metals.
If two parallel metallic plates of different materials are connected by

a wire (at a uniform temperature), there exists an electric field in the
space between these plates. This field is determined by the difference

in work function of the two metals, and the distance between the plates.

16k. Approximate Calculation of the Heat and Electrical Conductivity
of Metals

If the electrons suffered no collisions in the metal an electric field

would accelerate them beyond all limit, and the electrical conductivity

would be infinite. In Chapter 1 the transport phenomena in a classical

gas were considered, and it was found that the equations obeyed in the

various processes considered there all involved the mean free path of

the molecules in the gas. The electrical and heat conductivity of the

electrons in a metal, similarly, depends on the mean free path of the

electrons in the metal.

However, the collisions which limit the free path of the electrons are

not primarily those between electrons, which are negligible, but those

between the electrons and the fixed ions composing the crystal lattice.

For classical particles, then, one would be inclined to assume that

this mean free path I was of the order of magnitude of the distance

between lattice points, and practically independent of temperature.

This conclusion is false. In order to estimate the value of { it is neces-

sary to take full account of the quantum-mechanical nature of the

electronic states.

The result of such a detailed calculation of the collisions made by the

electrons shows that a perfectly periodic lattice of ions would cause no

collisions. The collisions are due only to the displacement of the ions

from their equilibrium positions by impurities and temperature motion.

As a result one finds that I is inversely proportional to temperature.

It turns out that I is approximately one hundred lattice distances at

room temperature. For the present, equations will be derived in which

the mean free path I enters as an entirely unknown parameter.

The more exact calculations are complicated by the fact that the

exclusion principle, which forbids more than one electron per cell, limits

the possible results of the collisions between electrons and ions. The

equations derived in this section, neglecting this effect, and making
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aome other amplifying aasumptions, differ from those derived with the

more rigorous method of section 16m in the numerical coefficients.

The heat conductivity of a metal is enormously greater than that of

a non-metallic crystal. For instance, the heat conductivity of aiver in

calories per square centimeter cross section with a temperature gradient

ct ooe degree per centimeter is about unity, whereas that of glass is

about 2 X l(r».

The heat conductivity of an insulator is due to the lattice vibrations,

which of course also conduct some of the heat in metals. However, at

least in the heavy metals, the contribution of the electrons to the heat

conductivity is so much greater than that of the lattice that the latter

may be entirely neglected.

The equation for the heat conductivity « of a gas has already been

derived in section Ij and is given in equation (1. 62) as 1

06.60) \

where Cy is the heat capacity and v the average velocity of the particles

composing the gas. This average velocity, in the case of the electron

gas, is high, even at zero degrees absolute, and changes relatively little

with temperature. The value of » at T = 0 will be calculated and used

in (60).

Since the kinetic energy of the electrons is \mv^ = c, it follows that

V « (2e/m)*^*, and the equation for the average velocity v is

il/2

C(€) d€.

Usmg (200 that

one obtains

. 1 W
Q J/2

C(€)
2

3/2 \m/ Jo 4\m /

Since the velocity of the particles at the top of the filled cells, whose

energy is M), is given by

one may write

(16. 61)
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Uabg this, and equation (48) that Cy/N »
write (60) for the heat conductivity x as

(16. 62) ^ t^N Uc^T

4 V mvu

(tV2) one may

In section 16m it will be seen that the more rigorous derivation leads

to the numerical factor t®/3 instead of the ir*/4 given here.

The electrical conductivity may be calculated under the simple

assumptions that the electrons come to equilibrium in every collision

and that they are statistically as well as mechanically independent.

After a collirion, then, the electron is assumed to start out with a kinetic

energy, the probability of which is proportional to iV(<), equation (26),

but with its direction of motion completely random. We shall fix our
attention on a large number of specified electrons all of which are

assumed to make a collision at the time f » 0. Owing to their random
directions of motion, their average z velocity, dx/dt, is zero, and the

average value of their x coordinate remains constant with time.

If these electrons are subjected to the force of an elect.ric field 6, in

the X direction, they experience an acceleration —eS/m along the

X axis, which results in a change in the average value of the x coordinate

with time. At the time t after the collision the value of dx/dt will be

— {Ze/m)t, and the average value, dx/dt, of the x component of velocity,

between t = 0 and t ^ to, is ^ {Ze/2m)to> If is the time between

collisions, then this expression will give the average velocity of the

electrons in the field. Since to = l/v, one finds, for the current

density I = -‘{N/V)e{dx/dt), the expression

V 2mv ^ 3 V mv^ ^

with (61).

(16. 63)

The electrical conductivity, v = 7/6, is then

_2N eH
^ 3 V mVu

The more exact derivation in section 16m results in this expression with-

out the numerical factor 2/3.

By division of (62) with (63),

(16. 64) T

is obtained for the ratio of the heat to the electrical conductivity. The
fact that this ratio is proportional to the temperature and independent
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of the metal is IcAown as the law of Wiedemann and Franz. Experi-

mentally, the ratio is constant, for different metals at the same temper-

ature, within about 15 per cent, and the average ratio agrees well with

the numerical factor ir^/3 derived in section 16in.

The only temperature-dependent quantity entering equation (63)

for the electrical conductivity cr is the mean free path Z. For a strictly

periodic potential, such as that caused by the ions of a perfect crystal

at absolute zero, with all the ions in their exact equilibrium positions,

the mean free path of the electrons would be infinite. Collisions of the

electrons with the ions are due only to imperfections in the lattice.

These imperfections arise from two causes: impurities in the crystal,

and temperature motion.

For the lattice without impurities, the interaction potential bet^wjeen

ions and electrons is proportional to the amplitude of vibration of the

ions, which, in turn, is proportional to The munber of collisions

per unit time is proportional to the square of the interaction potential

and therefore to T. The effect of impurities is to cause a constant,

temperature-independent contribution to the number of collisions per

unit time. The mean free path is inversely proportional to the number
of collisions, so that

(16. 65) I =
Xo

a + T

The temperature-independent constant a is highly dependent on the

amount of impurity in the metal and, presumably, would be zero for a

completely pure metal.

As a result, using (65) for I in (63) for cr, it is seen that the temperature

dependence of the electrical conductivity is given as

(16. 66)
A

^ b+t'
the resistivity, is linear in the temperature. This is experimentally

observed.

At low temperatures, for which the lattice vibrations are quantized,

the conclusion that the amplitudes of vibration vary with is unjusti-

fied and the temperature dependence of a is more complicated than that

of (66).

Although equation (66) leads to an infinite electrical conductivity for

an absolutely pure metal at T ~ 0, this prediction is not in agreement

with the observed superconductivity at extremely low temperatures.

In the observed phenomenon, the conductivity increases discontinuously

to infinity at a sharply defined temperature. Some metals do not
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become superconducting at the lowest attainable temperatures. The
observed superconductivity is presumably associated with an inter-

action between the electrons, an effect which is neglected in the present

theory.

161. The Maxwell-Boltzmann Collision Equation and Its Application to

Electrons in Metals

In order to make a somewhat more realistic and more rigorous calcu-

lation of the electrical and heat conductivity of metals, a method first

employed for gases by Maxwell and Boltzmann will be used.

If a temperature gradient or an electric field is applied to the metal,

the electron gas is not in complete equilibrium. The distribution func-

tion g(Px}PvfPx}X,yyZ), which will be written simply g, giving the number
of electrons per cell of momentum Px, Pyj Pt at the position ar, 2/, z, can no
longer be assumed to have the form + 1]“^ which was
derived for complete equilibrium. However, one may determine the

function g under the perturbing influence of the temperature gradient and
the field by two conditions which it must fulfill. The first of these is

that the function approach go as the field and temperature gradient

become zero. The second condition is that the function g be independ-

ent of time or, as it is usually stated, that the system is in a stationary

state. If the distribution function g is known, the equations for the rate

of transport of heat as kinetic energy, or of charge, through the metal,

are determined in principle.

The electrons in the metal are treated as a gas of mechanically inde-

pendent particles; their statistical dependence due to the exclusion

principle, that no two may occupy the same cell, will be taken explicitly

into account. The mean free path I enters into the equations derived

as a certain definite integral. The actual evaluation of this integral,

which determines the numerical value of I, is a rather complicated quan-

tum-mechanical problem which will not be attempted. It is in the

evaluation of this mean free path that the essentially quantum nature of

the interactions betw’een the electrons and the ions of the lattice enters.

In all other respects the description in terms of point particles of a

(classical nature is entirely adequate.

It will be assumed that the electric field and the temperature gradient

are both in the same direction, which may be chosen as parallel to the

X axis. All properties of the metal, and also of the distribution func-

tion, are constant for different y, z values at the same x, g is then a

function of x, but not of y and z. The distribution with respect to the

momenta must be symmetrical in the y and z components, py and p*, but

not necessarily in p*. If the symbol p is used for the magnitude of
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(p? + P? + “ay be written as ft functiiionmomontuin,
p

^ ^

°^Fof ^ approach po, the distribution func-

#.V,n in mmolete eqwhbnum. It will therefore be assumed that one

* !nZ ii5 slower series in p,. Ai sa&aenUy smaU Selds and
iuaje^fl^ ^ ^ ;'uflti&We to retain only tie inear

(16. 67) g(x,p,Px) = Pofep) + P*Pi(»>p)«

where

(16. 68) go(x,p) -
^

^yi(x)IkT{x)]
I

j

is the distribution function at equilibrium in which the dependence on x

is taken into account by considering m and T as functions of the cooipi-

nate.
\

Equation (67) is essentially an assumption, but it will be shown that gi

can be so determined that (67) fulfills the condition of giving a stationary

state, and that it becomes g — go when electric field and tempera-

ture gradient are zero. It will not be proved that it is the only solu-

tion.

The condition for the stationary state is set up by considering all

possible processes by which the distribution function is changed in time.

The sum of all these changes due to different processes must be zero,

but unlike the condition at true equilibrium, the change in g due to any
one process and its inverse is not zero.

The individual effects which tend to create a change in the density of

particles per cell, g, may be classified as three in number.

The first effect is due to the motion of the electrons in the momentum
range considered, with a velocity Vg ~ along the x axis. In the

time dtf particles from the coordinate position x — (Pxfi^) dt arrive at

the position x, and those formerly at x have moved to a new coordinate.

Since ^ is a fimction of x this tends to change the value of g at x. The
change due to this effect is, per unit time,

m dx

The second effect is due to the acceleration by the electrical field 6

which decreases the x component of momentum (negative charge). In

the time A, electrons from the px value of Px + ^ df reach the range Px,
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SO that this process contributes

408

-i“68
dp.

to the change in g per unit time.

It may be worth mentioning that these two changes of g will never bring about
a conflict with the Fermi statistics or the Pauli principle. If the density of the
electrons in the six-dimensional phase space (p-space) is, at some instance, such
that there are not more than two electrons in one cell of volume the Uouville
theorem guarantees that this density remains constant.

The third process is that of collisions of the electrons with the lattice

points, which causes discontinuous transitions of momenta out of, and
into, the range considered. The change in g per unit time due to colli-

sions which take particles out of the momentum region will be called

—a, and that due to electrons entering the region will be indicated by 6.

One may write

(16 . 69 )
dt

Px ^
m dx

+ c6
dp.

— o “1“ b * 0

as the condition for the existence of a stationary state. The main task

is the determination of the collision effects, a — 6.

A simplification which is always made consists in neglecting com-
pletely the collisions between electrons, which would be extremely hard

to handle. Only collisions between the electrons and the ions of the

crystal are considered.

A further simplification which will be used here in determining a &

consists in assuming that in a collision no energy is transferred from the

electron to the ion. The collisions are then elastic and change only the

direction, but not the magnitude, of the momentum of the electron.

Actually, the amount of energy transferred to an ion in an elastic colli-

sion, determined by the condition of conservation of kinetic energy and

linear momentum, is very small because of the enormous masses of the

ions compared to that of the electrons. Only transitions between regions

of equal magnitude of momentum p need be considered.

The decrease in g{^) due to collisions which result in changing the

momentum vector to "p' is proportional to the density gi"?) of electrons

with momentum and to the number of unoccupied cells, 1 — )*

at The proportionality factor will be called r^/, so that the number

of collisions of this specified type is ^ven by
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The increase in gC'p) due to those collisions which throw electrons of

the momentum region "p' into the range “p is proportional to g{p^)y to

1 - 6(p), and to rj/j,

Hv')^Trp9{p')[i-g{v)l

The two constants and must be equal. This can be deduced

by considering the condition of complete equilibrium. Detailed reversi-

bility will then prevail, that is, the rate of each process and its inverse

will be equal. At complete equilibrium, therefore, a(^) = 6(7?). fif ( 3?),

under those circumstances, reduces to go(p), a function of the magnitude

of momentum p only. Since it was asstimed that both r and rjj/

are zero unless the magnitudes of momenta p and p^ are equal, it follows

that go(p) = go(p^), and therefore the condition ai'p) = bCp) can be

satisfied only if
^

= r

We write, then, since

g(p)li - g(r)] - - g(p)] = g(p) - gC^h

that

(16. 70) a(r) - 6(p') = r^^lg(p) - flf(p')].

The total change a — 6 of g(]p), due to the collisions, is obtained by inte-

grating (70) over all directions of the vector "p'. If the metal is isotropic,

the transition probability r'f** will not depend on the orientation of the

vector "p in space, but only on the angle of deflection 6 between the

momentum vectors "p and "p'. The orientation of 'p', relative to 3?, is

then determined by this angle 6 and by the angle between the plane

common to 3? and and the plane common to "p and the x direction.

^ is so chosen that when 0 = 0 the direction of is closer to the x direc-

tion than when ^ = t.

The total change in g, per unit time, due to collisions, a — 5, is the

integral of a(p') — (70), multiplied by the volume element

sin 6 d6 over these angles.

Using equations (67) and (68), and remembering always that the

magnitudes p and p' are equal, one finds that

gVp) - o(p') = ip* - p'*)-

If 4' is the angle between "p and Px, then

Px ** p cob4'

and
p' s P COB 0 cos + p^ 0^ ^ COB
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The interaction r^. will depend on p and on but not on so that one
may finally write

o — 5 » Ptfi(®,p) f / r(p,ff)[co8 ^ — cos 0 cos f
•/Q •'0

— sin 6 sin ^ cos sin

Since f cos 0 « 0, ^ = 2ir, the integration over 0 yields
•/Q o/o

(16. 71) a — 6 = Pxgi(x,p) f r(p,d)[l — cosdpir sin^cW.
•'O

Now the main result of all this is simply that for a given magnitude of

momentum p and coordinate x the value of a — b is proportional to

PxOii^fP)- The proportionality constant, the definite integral in (71),

depends only on the magnitude of momentum p. Since its dimensions

are those of an inverse time, it may arbitrarily be written as v/I, where v

is the magnitude of velocity, v = p/m, so that

(16. 72) ® “

The quantity I in this equation plays the part of the mean free path. Its

dependence on the momentum p could be found only by a detailed inves-

tigation of the collision process. However, it will turn out that only the

value of I for the electrons of the highest filled levels, namely, those of

energy € ^ n, enters into the final results.

The fact that the quantity /, defined by the equation

1 m
(16. 73) 7 = ~ I

2irr(p,e)[l — cos sin 0 dB,
I p Jo

nmy be interpreted as a mean free path is unessential for our purposes

but will, nevertheless, be demonstrated here.

The value of o for the equilibrium distribution go(p),

a = 0o(p)ll - 0o(p)l f 2irr(p,0) sin 0 dB,
•/Q

represents the decrease, per unit time, of the number goip) of electrons

per cell, due to collirions throwing electrons out of the momentum region

p, and has the rfimanninn time~*. Since go(p) is a dimensionless quan-

tity the integral has the dimensions and since m/p has dimenrions

tr‘, the quantity I in (73) is seen to be a length.
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The logarithmic decrease in go(p)> a/(jro(p) is the probability per unit

rime that one electron of momentum p makes a collirion. The dimen*

rionless factor 1 — 0o(p) in this arises from the fact that some of the cells

into which collisions should throw the electrons are already filled. If

this factor is omitted, one obtains the probability, per unit time, of a

colMon in a beam of electrons, of momentum p, if all cells of the same

magnitude of momentum p but different directions are empty.

If now, in addition, the collisions were weighted by multiplication

with (1 — cos 0), so that those for which the angle of deflection $ is

small are not counted as full collisions, and those for which the deflec-

rion 0 exceeds 90° are counted as more than full colMons, the integral

obtained would be that occurring in (73). This integral.

T ^ = f 2irr(p,9)[l — cos fl] an 0 dB,
Ja

may be termed the probability per unit time of a collision, it b^g
understood that all cells into which the particle mav be deflected are

empty, and that the collisions are weighted with 1 — cos for the angle

of deflection 0. r, then, represents the mean rime between collisions,

and or = rp/m — I, the mean distance traveled between collisions. In

this sense I is a mean free path.

If equation (72) for a — b, the net effect of the collisions, is used in

(69), which equates the total change of the function g with time to zero,

one obtains

P_

ml
P»ffi(*.P)

= - Px 3g(»,P,P»)

m dx
+ 68

9g{x,p,px)

dp.

In the right-hand side of this equation, in contrast to the left, the con-

tribution from 00 does not vanish. Ck>nsequently, rince p,0i may be

treated as a small additive term in g, this may be neglected and 0o alone

used. Uring the fact that

dgo _ dg^ ^ dp_ _ p,

dp, dc dp dp, m de

one obtains

P t \ Px(9go -dgoN

and it is seen that the right-hand ride has the same form as the left one,

namely p, rimes a funcrion of p and x alone. This shows that the func-

tion g of the desired form (67) is actually a solurion of equation (69).
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Qi is determined by

(16.74) gi(x,p) =
p I Bx Bt.

With (67) and (68) the distribution function becomes

(16. 75) g(x,p,pt) == go - I— - c6
,

p Idi Bt\

1

~ g(.*-n)lkT ^ j

•

The chemical potential m and the temperature T in (68) are functions of

the coordinate x. In general, the experimental conditions arc such that

we wish to take T{x) as the known function which determines g{x,p,p\),

p(x) may be calculated in the usual way as where T is given as a

function of x.

Carrying out the differentiation of Qq with respect to x, one finds,

dgo _ ^0 r M € dfjL^dT

which, if inserted in (75), leads to the equation

06.75', +

In the next section this equation will be used to calculate the trans-

port of electricity through the metal under the influence of an electric

field, which gives the electrical conduciivity, and the transport of heat

under the influence of a temperature gradient, which determines the heat

conductivity.

16m. Electrical and Heat Conductivity and the Thermoelectric Effect

The density of the electric current, in the x direction, or the current

per second through unit cross section, J, is obtained by summing the

product of the charge — e by the component of velocity in the x direction,

= p*/w, over all electrons within 1 cc. of the material. Since a

volume range 1 and a momentum range dp* dpy dpz contains 2/A® cells,

2
there are ^(a;,p,px) dpx dpy dpz electrons in this volume and momen-

tum range. The current density is given by this number, multiplied by



408 DEGENERATE GASES |SM.16m

—eptim, and integrated over all momenta.

+00

(16. 76) I - P*0(x,P,Px) dp,dpgdp„

-00

Equation (75') is to be used for g, the number of electrons per cell.

In order to calculate the pure electrical conductivity, the temperature is

assumed constant, dT/dx = 0, so that the only perturbing influence is

that of the electric field. Since (/o is a symmetrical function in px, the
rt+oo

integral / Pxgo dpx = 0, and the first member of (75') contributes
00

nothing to the integral (76). The first term in the second brackets alt^ne

I
2

fc® m JJJ p d€
-00

dpx dpy dpt

determines the current.

The integration is first made over all directions of momentum with

constant magnitude of p. The steps may be written by introducing the

angle B between the direction of the momentum p and the z axis, and by

converting to

p = V2m€

Px = p cos ^ = V2mc cos B

— dpx dpy dpt = 27rp® cos® B^xnBdB dp
V

= 4irm®c cos® ^ sin ^ cB dc.

This leads to

/ - C C cos® B sin B dB,
hr Jq de Jq

The integral over the angle B is so that one obtains

(16,77) "ir'V. '•IT''*-

Since dgo/d* is negative everywhere, I is seen to be positive and propor-

tional to P>.

The integration over the energy t is performed by using the same trick

employed in section 16g and limiting ourselves to the seroth approxima-
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tion. Since — 5go/3« haa a sharp maximum at c » which is approxi-

mately « =» Moi and
/ (0oo/3e) dt = j7o(*) ~ 0o(0) = —1, one may

write

/ U-~dt^ lofio,

where /q is the mean free path of the electrons having the energy e

Using this simplification for the integral in (77) one finds

Ho.

(16. 78)
- 16irTO ,
^ 2^ * S Wo»

or, by expressing 1/A® in terms of no, (21),

(16. 780 / =
m̂ FV2mo/

The quantity (2;io/m)^^® is the velocity of the electrons at the upper

edge of the filled bands. Since the electrical conductivity via I/&, one

obtains

(16. 79)
I 16*w 2 N

The heat flow F, due to the electrons, is the kinetic energy c carried by
them along the x axis. This is the product v^e ^ Psc/m, integrated, for

the electrons in unit volume, over all momenta,

+00

(16. 80) ^ ^ mfff dptdpydp,.

-00

At first thought one is inclined to set 8 — 0 in (75^ to calculate the

distribution function g for a temperature gradient dTIdx and use this

in (80) to determine the heat flow. However, under these conditions,

8 = 0, dT/dx = 0, a flow of electricity would take place, that is, the

integral (76) for I would not be zero. Since the experimental condi-

tions under which heat conductivity is determined are such that no

electrical current can flow, it follows that the temperature gradient in

the metal establishes an electric field.

In order to calculate the heat transported under conditions of no

electrical current, the field 8 is determined in such a way that I calcu-

lated by (76) is zero for a given temperature gradient dTIdx. The
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heat flow, F, of (80), is then calculated with the given dTjix and the

field 6.

It is clear that under all conditions the contributions of the first term

go in (75') to both F and I are zero, since go is symmetrical in ps. The
general equations

(16. 81)

-00

and

—(jt _ i. _
dr Vr T Bt)]

dps dpy dpf

(16. 82)

F ^(fL
dx\T

f

f
-00 '

are obttdned for the current I and heat flow F under arbitrary field and

temperature gradient dTIdx.

The abbreviation

(16. 83)
lC)TWt r"

, dgo

3A® Jo * Bt
dt = J,

will be used. With precisely the same considerations which were

applied in the calculation of the electrical conductivity, leading from

(76) to (77), equations (81) and (82) may be written as

(16. 81')

(16. 82')

Setting the current / in (81') equal to zero requires that the field 6

must be

(16. 84)
1 (iT 2

,

dT /n fl/tf \

'fdxTidx\r~^)‘

If the field is now eliminated in (82') by using (84) one obtains

(16. 85)
1 dT JzJi - A
Tdx Ji

’

The integrals J, must now be calculated.
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To evaluate these integrals, the method developed in section 16g and
summarized in equations (39) and (39') is used. The application of

this equation with F(e) = W, cP"~*/(«)/</£*"“* = d®"F(«)/de®* leads to

(16. 86)

where I, V, l" signify the zeroth, first, and second derivative of I with

respect to e at c — m*

Insertion of (86) in (85) shows that in the expression {.J\Jz — J\)/J\

the contribution from the terms independent of T cancels. The part

which is linear in the correction terms of (86) will therefore ipve the

major contribution. One obtains

The derivatives of I with respect to t also cancel in this expression. I and

M may now be replaced by their values Jo and mo at absolute zero. Insert*

ing this into (85 ), one obtains

(16. 86')
„ 16ir®wj

, ,
rfr

By again eliminating t? with the introduction of mo (21) this may also

be written

(16. 85")
3 V m\2n>/ (lx

The heat conductivity k is defined as

(16. 87) K =
r

dT/dx’

so that, uring (2Mo/>n)^^® = »,, as in the equation for the electrical con-

ductivity.

(16. 88) K
16ir^m

~W~
N Ipk^T

3 V min

is obtained for the heat conductivity.
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The ratio of heat to electrical conductivity, k/ct, is found by dividing

(88) with (79) to be

(16. 89)

Equations (81 ') and (82^) contain, besides the electrical and heat

conductivity, all the thermoelectric effects arising from electrical fields

or currents and temperature gradients. These are notably the Thomson
effect, namely, the reversible generation of heat by electric currents in

a metal in which temperature differences are sustained; the Peltier

effect, namely, the generation or absorption of heat by a current at the

junction between two metals; and finally the potential in a therxiio-

couple, a chain of two metals in which the two junctions are kept'^at

different temperatures. We wish to discuss here only the last effect, i

Equation (84) gives the field, at any place in the metal, establish^

by a temperature gradient if no current is allowed to flovr. Between

two places in the metal, say Xi and X2 , at which the temperature is

Ti and Ta, respectively, there will be a difference of electrical potential

^(xa) — 5^ 0. The electrical potential in the metal, if meas-

ured from zero in vacuum, is related to the potential energy — of the

electrons in the metal compared to vacuum, ~ u. This difference,

^(xa) — 0(a;x)i is obtained by integrating the field —6 from Xi to xa,

or, since 6 depends only on T and dTIdz, by integration over T from

Tx to Ta. One obtains

If, in the term under the integral sign, — Ji and — Ja are replaced by
their values (86), it is seen that the contribution from their temperature-

independent terms cancels against —iilT. One-has, then, to use the

second terms in the approximation (86), and obtains

(16. 90) e[«(ra) - 4^{Tx)]

ir®
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rrom equation (43) for mCT) one sees that

413

MCrj) - M(ri) = - ^ (j« _ rf).
IZ /io

In the integral, since V = dl/dt is not expected to be very important,
the main term consists of

-I —dT = ^f -rdr = ^--(7l-r?).
Ot/y-j /i fjLQ 6 Mo

One obtains then, roughly,

(16. 90') e[«(Ta) - «(n)] «^ ^ (7^ - T?).
12 MO

The electrical potential 0(T) is higher at the higher temperature.

Since the potential energy of the electrons is — e*, the potential energy,

compared to vacuum, is lower at the higher temperature. The value

of M; the chemical potential measured from the potential energy in the

metal, is also lower at higher temperatures, and by about the same
amount as the difference in potential energy. The absolute chemical

potential, measured from vacuum, — e4>(T), decreases with

temperature about twice as much as either m or — alone.

The electric potential difference between two ends of a wire of one

kind of metal depends on the temperature difference between the ends,

but not explicitly on the form of the potential gradient, dT/dx, in the

wire. If the two ends have the same temperature, there exists no

potential difference, even if the temperature varies along the wire.

Matters are different, however, if the wire consists of two different

metals.

Let us assume that we have a wire consisting of two kinds of metal,

a and b. The two ends of the wire are of the metal b and both ends are

at the same temperature T2 - The middle portion of the wire consists

of the metal a, one of the junctions between the two metals being kept

at T2 , the other at the temperature Ti, This is a typical thermo-

couple arrangement. The one junction between two different metals

is in an oven at Ti; the other junction is kept at room temperature, T2 )

and the two lead wires, both consisting of the same metal b, are attached

to a potentiometer at room temperature r2 . We wish to calculate the

potential difference measured on the potentiometer, that is, the elec-

trical potential difference between the two ends of the wire. The two

free ends will be referred to as ends A and i?, see Fig. 16. 2.
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In this calculation, not only equation (90) must be considered, but

also the behavior at the junction itself. According to the discussions

in deriving the Volta potential (section 16j) at these junctions the po«

tentials of the two metals adjust themselves in such a way that the

free energies in both metals are equal; since the na{T), nh{T) signify the

Fig. 16. 2. Illustration of the thermoelectric potential. [It is to be noted that the

potential energy of on electron is minus e times the electric potential.]

chemical potential, or l/N times the free energy, measured above the

average potential energy for one electron in each metal, this means that

Ma(7'i)i ^6(7"!) at the junction are at the same absolute height. The.

same thing holds for Ma(T2 ), Hh{T2) at the other junction. This adjust-

ment of the potential energy of the metals cancels precisely the con-

tribution from the first term, fi{T2) — in (90). One is left with

(16. 91) «(A) - 0(B)

If M and { are treated as temperature independent one obtmns

(16. 91') ^(A) — +
6 e l/K0a\

/*0o^0a\

loa )

Mot

18a. liquid Helium n
In the early sections of this chapter the photon gas was treated as

an example of a degenerate gas obeying the Bose-Einstein equations.

This gas is in one respect not typical of a true gas of material particles:
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the total number of photons is not constant. The deni^ty of the photon
gas is therefore completely determined by the temperature, and is not
an additional variable, as in a material gas. For this reason the typical

behavior of a degenerate chemical Bose-Einstein gas is rather different.

As has been pointed out previously, the condition for a high degen-
eracy is, in a given gas, that the density be high and the temperature
low; and for different gases at the same molal volumes and temper-
atures, that the masses of the particles be small.

The two molecules H2 and He both consist of an even number of ele-

mentary particles, neutrons, protons, and electrons, and consequently

form systems obe3ring the Bose-Einstein equations. The molecular
weight of both is low, and they are in the gaseous state at low temper-
atures and moderate densities. The forces between hydrogen mole-
cules are stronger than those between helium atoms. In consequence,

H2 boils at a higher temperature, T = 20.3®K., and helium, with a
boiling point of 4.2°K., in spite of the higher molecular weight, is more
favorable for the observation of deviations from the classical behavior

in the gaseous state. The predicted deviations, however, are of the

same order of magnitude as those due to the molecular attractions, so

that a clear example of an ideal degenerate Bose-Einstein gas is not

obtained.*

A perfect gas of particles with the weight of helium atoms, at the

density of liquid helium, should be completely degenerate below about

3^K. Actually, liquid helium undergoes a transition at 2.2*’K. The
low-temperature modification, called liquid helium II, seems to persist

down to O^K. The solid state is obtained only by applying pressures

above 25 atmospheres, owing to the large zero point energy of the

vibrations in the crystal. Londonf has shown that at least some of

the anomalous properties of liquid helium II are those which would be

expected in a completely degenerate Bose-Einstein gas.

The type of degeneracy encountered in a Bose-Einstein gas is oppo-

site to that of the Fermi-Dirac gas. Instead of the zero point energy

of the latter, originating from the statistical repulsion of the molecules

in phase space, the former is characterized by a statistical attraction in

phase space, a tendency of the molecules to cluster into the same quan-

tum state. The perfect Bose-Einstein gas therefore displays a phe-

nomenon analogous to condensation:} there exists a condensation

temperature To below which a finite fraction of all the molecules exists

in the lowest one of the translational states. The hetit capacity of the

* George E. Uhlenbeck and Erich Beth, Physica, IH, 729 (1936); IV, 916 (1937).

t F. London, /. Phys. Chm., 43, 49 (1939).

} A. Ehiatein, Ber. Berl Akad,, 261 (1924), 3 (1925).
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gas rises from sero at 7 » 0 proportional to 7^^^ and undergoes a dis-

continuous change of slope at the condensation temperature. Below
this temperature the existence of many molecules of exactly sero veloc-

ity leads to strange behavior of the gas with respect to transport

phenomena, viscosity, and the transport of heat.

In the next section the behavior of the ideal Bose-Emstein gas at low

temperatures will be calculated. It is clear, however, that in view of

the non-existence of an adequate molecular theory of liquids the diffi-

culties of correlating the behavior of an ideal gas with that of liquid

helium are considerable. Nevertheless, it seems very sure that the

predicted type of behavior of the ideal gas is related closely to the

observed anotttalies in the experimental behavior of liquid helium.

16o. The Degenerate Bose-Einstein Gas ^

The distribution function, N/C, ^ving the number of molecules ter

cell of energy c, in a Bose-Einstein ssrstem, is
\

(16. 92)
N 1

C
-

For a gas in a volume V, composed of molecules of mass m, with only

one non-degenerate internal energy level, such as helium, the munber
of cells, C{*) Ac, in the energy range between c and c -h Ac, is ^ven by
equation (5. 2) as

The chemical potential m to be used in (92) is determined by inte-

gration of {N/C)C(t) df over all energies, and equating the result to

the known total number, N, of particles. By this method, at high

temperatures and low densities, for which —fi/kT 1, equation (6. 18),

namely.

(16. 94)
2irmfcr V

) n'

is obtained as the limiting classical approximation. From (94) it is

seen that decreases with decreasing temperature or volume.

Since the equation is invalid as --yLlkT becomes small, it is impossible

to ascertain from (94) whether n tends to zero, or even to positive

values, as T approaches zero.

Equation (92), however, serves to answer this question partially.

As M decreases toward zero, the number, iV/C, of molecules per cell in

the cell of zero eneigy, c — 0, approaches infinity. If, however, /u were

to become positive, the ridiculous prediction of a negative number of
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particles per cell would be obtained from (92) for € - 0. It is clear
that n may become (practically) zero with decreasing VfN and T, in
which event an appreciable fraction of all the particles will be in the
cell of zero energy, but that n can never become negative.

In order to calculate m without nmking use of the classical approxi-
mation, the distribution function (92) is expanded as

The first term of this expansion is just the classical approximation,

N/C — The product of the expansion (92') with C(e) dt,

(93), is integrated from e = 0 to e = «, and equat^ to N, Remem-

bering that f dx = one finds
«/o

2icV efc/t de

= = N.

Using

(16. 95) » = ^
for the volume per molecule, the equation determining m becomes

(16. 96) L I
“3/2^M/A:r ^ 1 (

_?L_
) .

1*1 V \2irmkT/

For very small values of the right-hand side of (96) only the first

term, of the sum in the left side need be used, and the classical

approximation, equation (94), is obtained.

The sum on the left-hand side of (96) converges for all negative values

of iu, and for ^ = 0. The latter solution, that /i - 0, is obtained if

(16. 97) = 2.612 = •

This equation determines associated values, Tq of temperature, and vq

of volume per molecule, for which the chemical potential n is zero. At

lower temperatures and volumes than these we shall show that the gas

condenses. This equation determines the condensation temperature

To{v) at any given volume c, or the condensation volume vo{T) at any
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given temperature T,

(16. 97') To{v) -

vo{T) =

h*
^ 114.7

V2.612»/ 2innk~y^'^M’

I /
Y'*

1 1227

2.612 \2«nA;ry ~ No

In the expressions on the rightM is molecular weight andV the volume

per mole in cubic centimeters.

At any volume, u, and temperature, T, the ratio of v to the conden-

sation volume for that temperature, v/vq, and the ratio of to the

condensation temperature raised to the 3/2 power for the volume v,

{T/ToY'^, are identical,

(16. 97")
V /2i™*5rV'='

\
\

I

For a gas of the molecular weight of helium, Af * 4, and at the den-

sity of liquid helium,V = 27.6 cm.®, equation (97') leads to To = 3.14®K.

At the density of the gas, V ~ 345 cm.® corresponding to the boiling

point at 4.2®K., the value of To for helium is 0.79®K. (T/To)®^® at the

boiling point is then 12.3.

Equation (96) appears to have no solution for m if » < vq. It is

obvious from a consideration of the original distribution function (92)

that some error has been made in arriving at such a conclusion, since,

as we have already found, as /i approaches zero the number of molecules

per cell at zero energy approaches infinity. There can, consequently,

be no fundamental difficulty in findmg a solution with —nlkT suffi-

ciently close to zero for any density greater than I/vq. It is to be

expected, then, that the correct solution is that fi remains essentially

zero for all temperatures or volumes below To or vq.

The error which led to the mathematical difficulty lies in the use of

(93) for C(c) d€ at € ~ 0. C(€) Ac signifies the number of quantum

states for one molecule the energy of which lies between c and € + Ae.

If c is large, this number is well represented by the continuous function

(93). But as c approaches zero the discreteness of the translational

levels makes itself felt. The continuous function (93) gives no cells

for c - 0. This error is completely negligible for v > vo, but for vol-

umes less than vo the system has an appreciable fraction of all particles

in the cell of lowest energy. London* has given a satisfactory mathe-

matical treatment which will be omitted here. His result is that

* F. London, Phyt. Rev., M, 948 (1938).
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below Vo the value of ~-n/kT is of the order of magnitude l/N, which,

for all practical purposes, may be taken as zero.

For volumes less than Vq, then, the chemical potential m is aero and
independent of density. This is just the thermodynamic criterion for

condensation, that the free energy, F » Nfi, shall be independent of

density. Equation (97^ gives the relation between the saturated

vapor volume, vq, per molecule, and the temperature.

Equation (96) bears a striking resemblance to equation (14. 10)

from which the conditions for condensation in a classical gas were

deduced. This analogy between the classical condensation and the

condensation of the perfect Bosc-Einstein gas was first remarked by

Kahn and Uhlenbeck.* Equation (14. 10) is that

(16.96') i:Z6,Z' = -.
1-1 V

in which the b{’s are certain integrals having the dimensions of volume

to the power Z — 1, and Z is the density fugacity of the gas, or density

of a perfect gas having the same chemical potential. Z is related to

the chemical potential fi by equation (13. 50):

Equation (96) may be brought precisely into the form (96') by u«ng

for bi an expression which has the form of equation (14. 9),

(16; 99) h = f(t.T)lfo = f"*'* = r®'*(2.612ro)'-'

f(lT) = r®'2(2.612vo)~S bo = 2.612V0.

Using this with (98) in (96'), equation (96) is obtained. The resemblance

is carried even to the power of I upon which f{lfT) here and in equation

(14.9) depends. From equation (99) it is seen that /(l,T) ^ In the

imperfect classical gas, the asymptotic dependence of f(l,T) on Z is as

if the sums 2/^*' converge, which they do above the temperature

Tm of disappearance of the meniscus.

The condensation in the classical and Bose-Einstein gases are both

given by boZ = 1. From (99) this occurs for the perfect Bose-Einstein

gas when Z = l/2.612vo, and, from (98), when /i = 0. For values of

V lower than Vo, equation (96') diverges. However, whereas for the

classical imperfect gas the interactions leading to the coefficients

• B. Kalm and G. E. Uhlenbeck, Fhjfsica, V, 399 (1938).
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in (96') are mechanical attractions between the particles, the perfect

Bose-ISnstein gas owes its condensation to the statistical attraction of

the particles in phase space.

For temperatures higher than To an approximate expansion for ii

may be obtained from equation (96) or (%'). It is more convenient

to use the form (96') mnce the problem of obtaining an expansion for

Z in powers of 1/v for this equation has already been solved in Chap-
ter 13. We found there that, setting

« _ ®x ,
fla

,
Os

,
«4

,P"2 + *3 + "4 + "'’>
V r tr tr

the solutions (see equations preceding 13. 36)

Oi = 1 ,

aa - -262 =

08 = 8l| - 36s = (4~* - 3-®'*)!^,
'

04 * — 4014 30626s — 464 »
(-5 X + 5 X 2-^'^ X 3“*/® - 2^)6g

are obtained for the coefficients. Using (99) for 6q and (98) for g, one

finds

1
(16.100) gf.lkT

If /A® \*'® 1 / A® \® 1i 1 - 0.36355 ( - + 0.05765( -——) -3
V [ \2irmkT/ V \2vTnkT/ t»®

/ A® \*'® 1 1

-0.005763(t r;;;) -5 + • •

\2trmkTj J

i jl - 0.92347 + 0.3926

- 0.1027 +

for V > voi and

(16. 100')
^
2wmkTy<‘

2.612('o

for 0 < pq.

At one atmosphere pressure and 4.2‘‘K., the boiling point of helium,

the ratio v/vq is 12.3, so that the first correction term in (100) amounts

to about 7.5 per cent under these conditions.
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The development for n is obtained in the usual way by use of
In (1 + *) ^ X — z^/2 + *®/3 • •

•, which, with (100), leads to

(16. 101) M » *r{ln(-^Y'*i 0.35355
I \2irmkT/ v \2mikTj v

- 0.00492(—^Yi - 0.00014 (—^Y^‘* -4
•

•

j\2imikT/ \2irfnkT/ t*® J

= kT jin - 0.9235 - 0.0336

- 0.0024 . .

for f> > Do, and

(16. 101') M = 0

for V < itq.

The energy may be evaluated in the usual manner, using the develop-

ment (92') as

(16. 102) L-J^ «^C(*)rf* = 2,rl

“ I Pi

since / dx = The sum which occurs in this equation
•/q

may be evaluated for v > t'o by using the development (100) for

and going through the direct but tedious algebraic steps. One finds

00 / \3/2 If / V/2

1

(.0. im, £ r-'V.-
. (^) 1[,_0..70,8(^) i

- 0.00330 Y
^Y-1 - o.00011o(—^Y^*V •

I\2irmkT/ \2TrmkT/ r/ J

= 2.612 ^|l - 0.4618^^) - 0.0225 - 0.00196 .

.j
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for » > ifo, and

(16. 103') £ i-na^MikT . £ j-612 . 1 341
1-1 1-1

for V < Vo,

The sum of the coefficients of the expression (103) must be such that,

when V « oq, (103) becomes equal to 1.341. Actually the coefficients

given lead to 1.342 «t v — vqi which indicates the degree of convergence

obtmned.

Using (103) and (103') in the expression for the energy per mole,

one obtmns

3 f /A® 1

(16. 104) E = - ftT 1 - 0.17678 I
-——; )

-

2 1 \2irmkTj v

/ fc2 \3 1 / \»/2 1
t 1

-o.oo33o(-—rs;)

-

5 -o.oooiio(„ -) -
3 -^ }\2itmkT) VZttoAT’/ J

» I
fer |l - 0.4618^^^ - 0.0225

- 0.00196
j

for V > vq, and

.-0.6134«r(-)

for T < To.

The heat capacity at constant volume, Cvi in obtained by differentiat-

ing (104) with respect to T,

3 f /A® \®^® 1

(16.105) C. = -E{l-h 0.08839(—) -

(

A* \® 1 /A® \*'* 1 1—);^ + 0.000385(—) ^+.)

- I
R jl + 0.2309 -f- 0.04504 -|- 0.00686 + •

-j
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for V > Vo, and

(16. I*')

= 1.925fi^^y

for V < Vo. The two expresaons (105) and (105') lead to the same
value of Cf at r = To. The heat capacity at constant volume, Cp,
then, approaches the same value, 1.925/2, which is 1.283 times the
classical value of 3/2/2, as the condensation temperature To is

approached from higher or lower temperatures. The slopes, dCy/dT,
however, are entirely different - above and below To- One finds, by
differentiation,

(16. 106) ^ - I
p{o.34635 + 0.135 + - • 1

for r > To, w > Vqj and

(16. 106')
dr 8 T Vo

for T < To-

The entropy at 0®K. is zero, since all the molecules are in the lowest

energy cell, and this configuration corresponds to only one quantum
state of the system, fi = 1, S = & In S2 = 0. S at higher temperature

J

r*T

{Cv/T') dT\ The integral
0

below To is obtained from (105') and isS(r) * (5/2)0.5184/J(r/To)®^^

T < Tot so that S{To) = (5/2)0.5134/2. The integral above To is

obtained by using (105); one finds

S(r)-S(To)= r%dT'

- I
0.045047? - f

0.00686ro»'®

= /2jo.2557 + ln(^y^*

- 0.0225 T-Y - 0.0023 i

- 0.2309
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By using

K In
” - « In + * In 2.613

-« In
(5!f2)’'’.

+ 0.96018,

the numerical constants, 0.8601 + 0.2557 + (5/2) 0.5134, add up to

2.4965 or practicaQy 2.5 * In The equations for the entropy may
then be written as

(16. 107)

(

A* \* 1 / A* 1

i>-T7s) -a- 000013 (--^) 4- .-

2rmkTj o* \2irmkT/ »*

- ® (t)’

- 0.0023
j

for V > Vo, and

(16. 107') 5 = 1 1.341fZ

(

5n\3/2 e „

n)
-

2
®““®;;

for V < Vq.

The rather unsatisfactoiy method by which the which is the

clasrical high-temperature approximation (see equation 6. 26), appears

in the entropy as an apparently accidental relation between a sum of

numbers is inherent in the approximstive developments.

An alternative calculation of the entropy may be made, in which the

constant 2.5R appears in a less accidental way in the equation. We
use equation (5. 8)

(16. 108) 5 = A In Oi) = £ ^Cy In ^1 J- JVy In -f- l^J*

for the entropy of the Bose-£Snstein system as a sum of the entropies

of the different regions at equilibrium. In this exprestion, (93) for

C(<) dc is used and (92) for Nj/Cj, which results in In [(Cy/ATy) + 1]

(€ - it)/kT, and In [1 + (ATy/Cy)] - -In [1 - The sums,
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« E and * F, are used to obtiun

(16. 108') S * - r kC{t) In fl - ®
•/q

'
' T T

From the thermodynamic relationship

F ^ E + PV - TS, g
- F + PV

it is seen that

PV Z*®
(16. 109) -gT - - *C(.) in [1 - dt.

With (93) for C(e) and the development

one finds

(16. 110)

-In [1 - «<'*—>/*r] = 2; rVO*—)/*r

t-i

= VkT

By comparison with (102) one sees that

(16,110') PV = %E

for all temperatures. This relationship was also found for the Fermi-

Dirac perfect gas. Using (llO') and (109) in (108'), one finds

(16. Ill)
5F _ F
ST t

'

If the expressions (101) for n » F/ATq and (104) for E are used in

(111), (107) and (107') are obtained for S. In this derivation the

constant numerical term is seen to be exactly 2.5B — E In

The Helmholtz free energy A — E — TS is seen from (104) and (107)

to be

f / A* 1
(.6. 112 )

- 0.17678 (
^ - - 0.00162

\2irmkTj v \2irmkTj

/ A* V'*l
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A =RT lln
- 0.4617 - 0.0111W

~ 0.00044
1

i

for p > Vo, and

(16. 112') A =

= 0.5134f2r
r\3?2 V

OMURT-
»o

/ fYl2

W
for V < Vo.

Equation (llO') for the pressure, PV « 2E/3, which, with

and (104'), leads to

(10
^)

(16. 113)

p = —

1

V

/ A* \®/*l
- 0.17678 (—rz) -

\2irmkTj v

- 0.00330
\2mikT/ p* \2irmkT/ p®

y 1 - 0.4618 - 0.0225 - 0.00196 -
...j

for p > Pq, and

(16. 113') P = 1.341fcr = 0.5134y
for p < Po, shows that the pressure drops to 0.5134 times the classical

value before condensation begins.
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AI. The Notation of Calculus

If a quantity F depends on the value of a variable a;, F is said to be a func-

tion of Xf and this is symbolized by writing

(AI. 1) F « Fix).

The total derivative of F with respect to a: is the limit of the ratio of the

increase of F to the increase in x, as the latter becomes vanishingly small,

(AI.2)
dx

lim
[
Fjx + Ax) - Fix)

I Ax

n variables, xi,X2 ,

• • •
, Xn, are said to be independent if each of them may

take any value, within a certain range, completely independently of the values

of the others. If the quantity F depends on the values of the n independent

variables it is said to be a function of these variables.

(AI.3) F = F(Xi,X2,
• -

,
x„).

The partial derivative of F with respect to one of the variables Xi is the limit

of the ratio of the increment in F to that in Xi if all the other variables remain

constant.

(AI.4)
aF(Xi,-»,X<,-',Xn)

dx«

Fixu • • . Xi +Axi, • ’ •
, Xn) - F(xi, • •

•
,
x», • •

•
,
Xn)]

» lim T
(

A*,-*01 >

If z is a function of two independent variables x and y, s z(x,j/), then any

physical quantity F which is a function of x and y may also be written as a

function of x and s or of y and z. Since the functional dependence of the quan-

tity F on X and y is different from its dependence on x and z, that is, the value

of F is different when x » a, y * 6 than when x » o, z « 6, the usual mathe-

427
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matical nomenclature is to indicate this by choosing different symbols for the
function of x, y and that of x, s. The notation for the quantity F

(AI. 6)

may be used.

In general,

(AI.6)

F * G(x,y) = H{x,z)

SG(x,y) dH(x,z)

dx dx

but

(AI. 7)
dG(x,y) dH(x,z)

^

dH(x,z) dz(x,y)

dx dx dz dx

In physics, and particularly in thermodynamics, it is convenient and I cus-

tomary to keep the same symbol for the same quantity^ that is, in the case al^ve

the symbol F would be retained for the quantity F independently of whether

it were thought of as a function of x and y or of x and z. The partial derivatVes

are then indicated by

(AI. 8)
dG{x,y) ^ /^\

^

dH{x,z) ^ /^\
dx \dx/y* dx

so that the symbol (dF ldx)y means the ratio of the increment in the quantity F
to that of x if the variable y is kept constant, whereas (dF /dx), is the ratio of

the increments when the variable z is held constant. Equation (AI. 7) would

then be written

(Al.r)

If the quantity F depends on n variables the partial derivative of F with

respect to any one of them should, in this notation, be written with the other

n — 1 variables outside of the brackets to indicate that they are held constant

during the differentiation. Sometimes there are some of the n variables which

are practically never replaced by others, as y was replaced by z above; these

variables may be omitted from outside of the brackets. For instance, the

thermodynamic quantity S, the entropy, depends on the energy E, the volume

F, the number of molecules Ni of kind 1, the number Nz of kind 2, etc. Whereas

E is often eliminated by introduction of T, so that it is necessary to distinguish

(dSldV)B and (dS/dV)T, and similarly V is often replaced by F, the numbers

of particles are practically always assumed to be held constant in such differ-

entiation, and are usually omitted from the symbols outside of the brackets.

If F depends on two independent variables x and y one may write for any

change dxinx and dy in y.
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If the change is such that dF is zero it is a change in x and a change in y at
constant F, so that one obtains

(AL 9)

It may sometimes be convenient to write a quantity F explicitly as a func-
tion of z and of y even if the quantity y is not independent of z but is itself a
function of », y * yi^)> In this case the definition (AI. 4) may still be
retained for the partial derivative of F with respect to in which y is thought
of as a constant. Since, however, y is determined by the value of x, the quan-
tity F depends only on the value of x, and has a total derivative with respect
to X

(AI. 10)
dF^ /^\
dz \dx Jy \dy /, dx

Essentially the same is the case that F is explicitly a function of n variables
* *

-
, Xfi) but each of the n variables is a function of only one independent

variable t. Then

(AI. 11)
dt imidzi dt

If, in a sum of numbers, a + 6 + c + d • •
•

,
the individual terms are num-

bered by use of the notation a =* oi, 6 = 02 ,
c = 03 ,

the ith term being indi-

cated by Oi, the sum is usually indicated by the notation

I-*!!

(AI. 12) Oi = Ui + 02 + • • • + Oi + • • • + ttn

1-1

if n is the total number of terms. The running index i, which numbers the

terms, may be essentially artificial, as suggested above, or may have a natural

significance in the term. For instance, the individual terms of the sum may
be simple functions of a variable x for integral values i of the variable, Of = /(x)

at X s i. In this case the value of i for a given term is naturally defined, and

possibly in such a way that the first term is not that with i = 1, but say with

i « m. This is then indicated by the notation i = m, instead of i = 1, for the

lower limit of the sum, below the summation symbol 2).

If the sum contains an infinite number of terms this is indicated by the upper

limit i « 00 above the summation symbol. The value of the sum is then

determined and finite only if the individual terms approach zero in value suffi-

ciently rapidly as the running index i increases (see the sections dealing with

infinite series in any book on advanced calculus).

The terms of a sum may be numbered, naturally, not by a singile integer, but

by a set of two or more integers. For instance, the terms may be a simple
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function /(x,»,*) of throe variables, *, y, and *, for integral values of these

variables between aero and infinity. The terms may then be numbered by

three subscript indices

oat - /(*,y.*) (at » - i, y - j, s - k)

and the sum written as

(AI. 13) L
1-0

k--

k-0

The notation of equation (13) is obviously rather cumbersome and would

become especially so if the set of numbers representing the running indices

included more than three simple numbers. We may use the symbol n for the

set of numbers i, J, k and simply write (13) as

(AI. 13') £ On-
n-O

1

If the limits of summation are unambiguous from the description of the sum
they are frequently omitted in the writing of the equation.

The symbol II is used for a product in the same way that£ is used for a sum:

(AI. 14)

It is clear that

(AI. 15)

i —

n

• O* • • • Oi • • • 0» •= n U|.

f

I

In
I
n [

“ Z In ai.

li-i J i-i

An. Some Definite Integrals

J
'**

. 1 r* n

!
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Eq. AXILS]

axil The Bttler>lfMlatiria Sttmnatfam Fonnnla
The sum of a function of eome variable j, for integral values of the variable

between two linuts m and n, is symbolized by
i-n

(AIII. 1) JLJ(J) - f(m) + /(m + 1) + 1) +

If the function / is definable for non-integral values of the variable, /(*), the
sum may be approximated in terms of the mtegral of /(i) between the limits
m and n and the values of the function and its derivatives at the two Umite
The appro^tion formula is known as the Euler-Maclaurin summation
formula. The symbol

(Am.2)

is used for the rth derivative of the function at the value x - a. Then

(AIII. 3) 'L/0')- r/(*)d* + s [/{«)+/(")]
jmm Jn 2

where the numbers Bk are the Bernoulli numbers, Bi » ~
Ba = W*

Fio. AIII. 1.

The first few terms of thb development may be readily checked geometri-

cally. In Fig. AIII. 1 a function, /(x), is plotted against x between the limits

and n. The integral is the area under the smooth curve. The values of the
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function at integral values of the variable x are shown as perpendicular lines,

BO that the sum is the sum of the heights of these lines. Since ihe lines are unit

distance apart the sum of the heights of all but the last, /(n), is given by the

shaded area under the stepwise figure. If the points f(j) ftnd f(J + 1) are

connected by straight lines, the areas under the triangles so formed above the

steps form the first correction to the difference between the area of the step-

wise figure and that under the smooth curve. The area of each triangle is

i lf(j) — f(J + l)li and the sum of their areas is J [/(m) — /(n)J, if account is

taken of the fact that the triangles above the steps must be subtracted from the

integral and those below must be added to the integral in order to approximate

the sum. Adding the integrals, the areas of the triangles, and the last term of

the sum, /(n), one obtains the approximation (AIII. 3) up to the terms con-

taining the derivatives.

The correction of the first derivative can also be seen geometrically rathpr

simply, but we shall omit the argument.

If, however, it is assumed that a general equation like (AIII. 3) can be

obtained, that is, one which expresses the sum between two limits in terms

the integral between these limits, and the values of the function and its deriv^

atives at the limits, then the coefficients of the first terms may be obtained

readily by the consideration of a special case.

The integral of the function c”®* between zero and infinity is ar^. The value

of the function and of all its derivatives at x » is zero. The value of the

function at x « 0 is unity, and of its rth derivative is (—a)** at this value of x.

The sum from ^ « 0 to / « « can be summed in closed form and the

expression expanded as a power series in a containing powers minus one, zero,

and all positive powers. The coefficients of this series give the coefficients in

(AIII. 3).

The steps are simple enough algebraically. The quantity 1/(1 — c“®) can

be seen to be the desired sum if the indicated division is carried out. The
exponential c”® may be expanded in a power series in a, and the analytical

expression obtained may be divided into unity, obtaining

(AIII. 4)

CD

J-0

1 1
.
1.1

l-c“®

+ ^ -o*-
30,240

720
(

The coefficients in (AIII. 4) agiee with those in (AIII. 3).

AIV. The Factorial and the Stirlmg Approximation

The product of N factors, iST • (iV - 1) • (AT - 2) • (JV - 3) • 3 • 2 • 1 is

called N factorial, and written N !. The convention is adopted that zero fac-

torial is unity. The logarithm of N !

J-iV

IniV! Z Ini(AIV. 1)
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may be approximated by the Euler-Maclaurin summation formula (AIIl).
The integral of In x is x In x — x, and between the limits 1 and N gives

Wln]V - N +1. The value of the function at x « AT is In JV, and at x « 1

is zero. The derivatives of In x are inverse powers of x, so that at the limit

X « AT the derivatives may all be neglected for large values of A^ At x « 1

the derivatives are independent of N. One obtains,

(AIV. 2) In JV !s ATln AT - AT + i In AT + c,

where e is a term containing a constant and inverse powers of N, The constant

term in c is actually ^ In 2ir, so that

(AIV. 3) AT ! « Ar^e-“'^(2irV)»'2

for large values of N.

AV. The Volume of an Af-dimensional Sphere

In an A^-dimensional space of coordinates xi, xs, , xat, the part of the space

for which

x! + x| + xH-- +x^<r*

constitutes the inside of an V-dimensional sphere of radius r. The volume of

this sphere is

Vj^ = for N even,
UN) !

and

AT 1

Using the Stirling approximation for the factorial, the asymptotic expression

for In Vn is the same for both cases.

AVI. The Method of Undetermined Multipliers

Suppose that one seeks the maximum (or minimum) value of a function F
of N variables, Xi, X2,

• • • xj^. This value will be determined by the condition

that the variation

^ dF
(AVI.1) fiF* £^6x, = 0

dXw

in F for any conceivable small variation 5xi, • • • 5xjv of the variables shall

be zero. This condition can be satisfied for all possible variations of the vari-

ables only if every partial derivative is zero,

dF

dxp
(AVI. 2) 0 .
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Whether the extremum so found is a maximum or not must be determined by

the values of the second derivatives.

However, it may be that not all the variables x are independent, but that

some condition

(AVI. 3) f?(*) = 0,

where G is a function of all the x^s, must be obeyed.

One may then seek the maximum value of F, subject to the condition (3).

In this case equation (1), that BF = 0, must still hold at the maximum,

though not for all arbitrary variations of the variables, but only for those which

are such that the variation in G is zero.

^ dG
(AVI. 4) 5G»:E^5x, 0.

dXp

SO that equation (3) is maintained. One can, then, not conclude that equation

(2) must hold.
\

Since, for the allowed variations of the variables, the quantity BG, equation

(4), is zero, and of course also zBG = 0 for any value of z, one may subtract liBG

from (1), without altering its value, and obtain

(AVI. 5) BF ^ /dF dG\ .

Equation (4) gives us one condition by means of which the variation Bx^ of

one of the variables x^ is determined if all the other variations

Bxif • • • 3X|i4.i,
• • • Bxjf

are arbitrarily assigned, that is, the condition (3) may be maintained with any

arbitrary variation in the values of V — 1 of the N variables. The numerical

value of z may be so chosen that, if dG/dXf^ is not zero.

(AVI. 6)
dF dG ^__ 2_ « 0

,

dxu,

and in the sum of (5) the ^th term is zero whatever the variation in x^ is. How-
ever, the sum over the other N — I terms must be zero if F is to be a maximum,

and since all conceivable variations of the N ^ I terms are consistent with (4),

one fmds that, for all values of v,

(AVI. 7)
dxp dxp

This is a necessary condition for the position of the maximum of F subject to

condition (4) that G be held constant. The numerical value of z must be

determined in such a way that the function.G has the particular value zero if

condition (3) is to be obeyed.
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From (7) it is seen that

(AVI. 8) z =
dG

The extension to two conditions is fairly obvious and will not be discussed
in detail,

AVn. Combiiiatory Problems
Problems frequently arise in statistical mechanics which may be shown to be

identical to some problem concerning the number of ways in which objects can be
arranged in order or placed in piles or boxes. The answers to some of these
problems follow.

(1) The number of ways in which N distinguishable objects can be arranged
in order is

N\

The object to occupy the first place may be selected out of the N different

objects in N different ways. Independently of the choice for first place the

selection for second place may be made from the remaining N I objects in

iV — 1 ways, so that the first two places may be filled in — 1) ways.

Similarly the object for the kih place may be chosen in — A: — 1 ways after

the first A; — 1 places have been filled. The product

Ar(J\r-l)(JV-2)--.3.2.1isJVl

This numberN I is also the number of permutations ofN objects.

(2) The number of different ways in whichM objects may be selected fromN
distinguishable objectB, irrespectiye of the order of choice, is

Nl
(AT - M) ! M !

The objects may be arranged in order in N ! different ways, and the objects in

the first M places always chosen. However, many orderings lead to a choice

of the same M objects, namely, all those which differ from each other only by

permutations of the objects in the first M places among each other, and permu-

tations of the remaining N ^ M objects among each other. The number of

these permutations isM 1 (AT — AT) I, so that every choice of the first Af objects

corresponds to this many different arrangements of all the particles in order.

The number of choices that one can make is then N I divid^ by the product

M\(N-M) !.

(3) The number of ways in which N objects may be arranged in two piles of

respectivelyM and AT — M objects each is

AT!

(IV-Jlf)IMI
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The problem is the same as the preceding one sinoe, after the selection of M
objects, the remaining N -- M me uniquely determined.

(4) The number of weys in whidi N objects may be jdaced in P pilesi mi in

the first pile, ms in the second pile, . • . ,m|iniheiih,with

jp

2 wii “ N,

N\

Hmi\
t-1

The N objects are ordered, and those in the first mi places assigned to thej first

pile, those in the places mi + 1 to mi + ms, inclusive, assigned to the se^nd
pile, etc. There are N ! different ways of arranging the N objects in o^er,

but any one assignment of mi definite objects to the first pile, ms definite objects

to the second, etc., corresponds to Ilm« I different arrangements of the objects

in order, sinoe aU permutations of the m,* objects with each other, within the

one pile t, lead to a new arrangement of the N objects but not to a new assign-

ment to piles. The total number of ways the objects can be assigned to the

piles, with given values of the mi’s, is the total number of arrangements in

order, N I, divided by the number of arrangements per assignment to piles,

Ilmi !, or ATI/IImi !.

(5) The multinomial coeflBicient, the coefficient of in the sum Zlr,-

raised to the power N is

N]
Ilmil

with £ mi s iST, if there are P members Xi in the sum. This problem can be

shown to be identical to the preceding problem, (4). One writes the NiAi power

of the sum J^Xi as N consecutive distinguishable factors. Each term in the

product contains one and only one x from each factor. If from one factor the

X chosen is Xi, that factor will be assigned to the pile i. The number of ways

that we can make selections from the numbered factors so as to have mi objects

in the pile t for all values of t is the above expression, and this is just the num-

ber of terms in the expansion having the given powers mi of X{.

A special case of (5) is that there are just two values of i, so that

N\
{N-M)\M\

ia the binomial coefficient, the coefficient of in the expansion of
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From (5) the values of certain sums may be aacertuned. For instance

N\

£o(N -M)\M l
+

mi">N

£
«l<-0
i-P

N\
i~P

n »»<

!

r Mi-N <“»

P^,

•VI

N\N

i^oW- M)lMl
(_l)ir = (j _ i)*r * 0.

An example of a more complicated trick which may be employed to evaluate a

sum is

i
mZo(N - M)lMl

(A + BAf)*(-l)^
Vdx*/x-o

Oif A; <N

e^*(l -

(6)

The number of ways in which N distinguidiable objects may be assorted

into piles with nii piles of one object eachy ntt piles of two objects each, . .
.

,

mk piles of k objects each, so that

is

£ knik = AT,

N\

*

This problem differs from (4) in that the piles are unnumbered. In (4), if the

first pile contained three objects and the second pile the same number of objects,

the arrangement would be different if the objects in the two piles were all

exchanged, whereas in this problem only the number of piles of three objects

each is specified. With numbered piles the number of arrangements would be

N ! lllki I which must be divided by l^mu ! for the numbers of permutations of

piles with identical numbers of objects.

(7) The number of ways N distinguishable objects may be placed in C

numbered boxes with no restrictions on the number of objects per box is

since each object has C different possible choices among the C boxes, inde-

pendently of ttie positions of the other objects.

(8) The number of ways that N distinguidiable objects can be placed in C

numbered boxes with no more than one object to a box,N ^ C, is

C\
- •

(C - JV) I
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The first object has C choices, the second C — 1, etc., until the last has

C — N + 1 possible positions available. The product

C(C - 1) • •
• (C - N + 1) is C !/(C - N) !.

(9) The number of ways that N indistinguishable objects can be placed in C
numbered boxes, no more than one to a box, ^ < C, is

C\

(C-N) IN I

The problem is the same as in (8) above, except that the iV ! dilTerent permuta-

tions of the N objects in the boxes all count as the same arrangement. The
answer to (8) must be divided by N !.

(10) The number of ways that N indistinguishable objects can be placejd in

C numbered boxes with no restrictions on the number per box is

(r 4- - 1) !

(C- l)!iVr

The proof of this is less direct than that of the other problems. An arrant-

merit is characterized by the number of objects in each of the nuinliered boxes,

since the objectts are indistinguishable. (Consider the arrangement in a line

of the symbols ri, ra, • *
•

, rci ^ii <*2 ,
' *

•
, ojv, for instance

Zi 02 O4 Zb Ob O9 Zs Z4 Zg Ob • • •

Such an arrangement could be used to define an assignment of N numbered

objects, the a’s, to C numbered boxes, the r’s, by adopting the convention that

the objects to the right of each numbered z belong to the box of that number.

For instance, the above corresponds to objects 2 and 4 in box 1, objects 8 and 9

in box 8, no objects in boxes 5 and 4, and object 6 in box 9. One must observe

the convention that the row starts with a z, and we shall consider only arrange-

ments of the symbols which start with zi. However, (C — 1)1 such arrange-

ments of the symbols correspond to one arrangement of numbered objects in

the same boxes, since permutations of the C — 1 groups of each Zi with its fol-

lowing a’s corresponds to the same arrangement of numbered objects in the

boxes. In addition all N ! permutations of the a’s correspiond to the same

arrangement of unnumbered and indistinguishable objects to the boxes. In

all, each assignment of the indistinguishable objects to the numbered boxes

corresponds to JV ! (C — 1) I arrangements of the symbols, and the AT + C — 1

symbols (after the first) may be arranged in (AT + C — 1) 1 ways.

AVIII. General Thermodynamic Relationships

The entropy <S is a “ natural ” function of the energy E, volume P, and

number Ni of molecules of kind i. By natural function is meant that the

derivatives

\dE)v,N, " T
' “ T ' \dNijM,y

*(AVIII. 1)
T
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ate ^ple expresnons. From (1),

(AVIII.2) dS = ^dB-\-~dV -^dNi.

(AVIII. 3) dE= TdS - PdV + (i,dNi,

The heat content //, which is sometimes called enthalpy, especially if meas-
ured in B.t.u. units, is defined as

(AVIII. 5) H ^E + PV, dH =^dE + PdV+V dP,

(si-L—
The work function A is also called the Helmholtz free energy, or the free

energy at constant volume; it is defined as

(AVIII. 7) A^E-TS, dA--dE- TdS - SdT.

*> (iX»,
- -*• (E.. - (E.k

“

The free energy F, also known as the Gibbs free energy, or free energy at

constant pressure, is

(AVIII. 9) F = A + PV = // - TS,

dF = -SdT- V dP + m dNi,

“™' “> (E.--"
The heat capacities, Cv at constant volume, and Cp at constant pressure,

are defined as

Certain relationships,

(AVIII. 12) ^ . = - (21) from (4),
\dvjs \dSjv

^(E) ^(E)
KdP/s \9S/p

(AVIII. 13) from (6)
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and y .

(AVni.l6)

are sometimes useful.

The relationship

(AVIIL 16) Cp - Cv

is proved in section 11c.

Bold-face type, S, V, E, H, F, A, C/>, Cv, is used in this book for the extensive

thermodynamic properties per mole of material.

AIX. Summary of Thermodynamic Functions of a Perfect Gas \

For a perfect gas, any extensive thermodynamic property X may be written

as a sum of terms, \

(AIX.1) +
where Xt gives the contribution to X of the translational motion of the center

of mass of the molecules, and Xi the contribution of the internal degrees of

freedom. X| is zero for an ideal monatomic gas, defined as one for which only

one internal quantum state exists. To within varying degrees of accuracy, Xi

may be written as a sum of terms due to the different internal degrees of freedom

in the molecule.

(o) The Tranelational Contribution, Xk, per mole

The symbols used are : P, V, T, pressure, volume per mole, and tempera-

ture; k, the Boltzmann constant, 1.3804 X lO"'^® erg /deg.; R — NJc, with

No Avogadro's number; m is the mass per molecule, andM the molecular weight.

The thermodynamic functions are defined in AVIIL

(

^2 \8/2 ^
172irmkT/ V

« RT In (
r—

i

—
\2TrmkT/ kT

= RT(-i\nM -^InT -\nV + Kpv)

« RT(-i\nM -ilnT + \nP + KFp),

(AIX. 3)

- Er(-i InM - I In r - InV + K^k)

= fir(-tlnAf-f lnr + lnP + JSTaj*),
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(AIX. 4)

(AIX, 5)

(AIX. 6)

(AIX. 7)

(AIX. 8)

« R(^lnM + |lnT +InV + Ksv)
* R(|lnM + |\nT -kP + Ksp),

Hk = 4ftT,

Bk = iRT,

Cpk - ^R,

Cvk - ifi.

TABLE AIX. 1

In X » 2.302 59 logiox

Quantity Joules/Mole Deg. Cal./Mole Deg.

R 8.3136 1.9864

iR In X 9.5714 logio 2 2.2869 logio X
Eln X 19. 1428 logio X 4. 5738 logio 2

4^2 In X 28. 7142 logiox 6-8607 logio ^

2i21n X 38.2856 logio x 9. 1476 logio ^

4Alnx 47,8570 logiox 11.4345 logiox

TABLE AIX. 2

1 atmosphere » 760 mm. » 1.013 249 baryes.

Constant Units
Value of

Constant

j

R X Constant

joules/mole deg.

R X Constant

cal./mole deg*

Krv V cc. 8.064 67.042 16.019

Krv V liters 1.156 9.611 2.296

Kfp P atm. 3.657 30.403 7.264

Kpp P mm. -2.976 -24.741 -5.912

Kpp P baryes 3.644 30.295 7.238

Kav V cc. 7.064 58.727 14.032

^AY V liters 0.156 1.297 0.310

Kay P atm. 2.657 22.089 5.278

Kay P mm. -3.976 -33.055 -7.898

Kay P baryes 2.644 21.981 5.252

Ksy V cc. -5.564 -46.257 -11.052

Ksy V liters 1.343 11.165 2.668

Ksy P atm. -1.157 -9.619 -2.298

Kay P mm. 5.476 45.525 10.878

Ksy P baryes -1.144 -9.511 -2.272
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(6) The Internal Cordrihutbn, X|, per mole

The internal partition function per molecule, Qi, is defined by

(AIX. 9) Qi =

all internal quantum atataa i

where 4 is the energy of the state. The energy of the lowest state is usually

taken to be zero, in which case the energyB is zero at O^K. The sum goes over

all non-degenerate states, so that the exponential of a level of degenenu^ g, con-

sisting of g states, must be multiplied by g. Then

(AIX. 10) F, = A, = -BTlnQi,

(AIX. 11)

(AIX. 12)

(AIX. 13)

S. - (TbQ.) = Br^lnQi-l- filnQ.,

H, - E, = Br*^lnQ,

Qi 1 feT

l!(2r|toe, + T-^1.9,)

\

\

These equations are perfectly general for all perfect gases. For many mole-

cules the progression of the energies ^ of the quantum states approximately

obeys one of several simple equations, and for these types of molecules the

summations may be performed analytically.

(c) General Contributions to X|

The contribution due to nuclear spin of magnitude Sm per gram atom of ele-

ment, is

(AIX. 14) F.pin « Aapin = -RThi (2Sn + 1),

(AIX. 16) S.PUI * « In (2Sn + 1),

(AIX. 16) Hapin » Espln * Cp gpiii = Cf ipln 0.

These equations hold for all monatomic gases, and for all di- and polyatomic

gases for which the rotational .contributions are given by the classical approxi-

mations, that is, at high temperatures. In practice only hydrogen and some
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hydrogen derivatives at low temperatures form exceptions. These contribu-
tions, since they cancel out in all differences of free energy or entropy, for which
the gram atoms of element are naturally constant, are usually neglected. The
same statements apply for the contributions due to isotope mixing which follow.

If n,* is the fraction of isotopes and if the difference in masses of the isotopes
is neglected, so that the only effect of their presence is the non-identity of atoms
of different isotopes, then, per gram atom of element,

(AIX. 17) F mixuiK *= A mixing — RT ^ In n,,

3

(AIX. 18) S mixing “ —R E n; In n/,

3

(AIX. 19) H mixing — E mixing = Cp mixing = Cr mixing = 0.

(d) Xi for Monattmic Gases

The general equations (9) to (13) may be used with Ci the energy of the vari-

ous spectroscopic terms. If the term value co is given in cni.~^, multiplication

by 1.4390 gives ei//:, and by 0.6249 gives €i/2.3026 A:, so that is antilog lo

(—0.6249w/r). Usually very few, and often only the lowest term for which

Ci == 0, contribute appreciably. The degeneracy of a term is 2j -h 1, so that

the exponential of a given term must be multiplied by 2j -f 1, the number of

quantum states of that energy. The quantum number j is the quantum num-
ber of total angular momentum and is the lower right-hand subscript in the

usual term notation.

If only the lowest term contributes, the equations for Xi become those of

(14) to (IG) with j for the lowest term replacing the spin Sn.

(e) Xi for Diatomic Gases

Diatomic gases with a single lowest electronic state having no electronic angu-

lar momentum, and for which the energy of the first excited electronic level is

high compared to kl\ have energy levels due to molecular vibration and rotation

W'hich are often represented fairly w^ell by the e(iuation

(AIX. 20) *(v,j) = V/.I- + iU + 1) •

Equation (20) gives the energy above that of the lowest quantum state. The
degenera(jy of each level is 2j -h 1 . The quantum numbers v and j take only

integral values, v is the natural frecpiency in sec.“*, 7 the moment of inertia,

7 = /zro, with n the reduced mass, /jl == niimolimi + wis), and rothe equilibrium

separation of the atoms in the molecule.

Usually CO and J?, both of dimensions are tabulated instead of v and 7,

(AIX. 21) « = -.
c

^ “
8ir»/c

(AIX. 22)
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If equation (20) is yali4» Qi u a product of factors, and Qjmi and Xi a sum
of terms, Xv + Z|m*

Vibratioa. One defines

(AIX.23)
^ ^ hc(i»

T kT kT*

The numerical conversion factors are given in the following table.

TABLE AIX. 3

Given e S/2.30269 i21nS

hf erg/molec. 7.245 3.146 X 10** A. 72.542 + 4.5738 logi0|Ar

Ai^e. volts 1.1600 X 10* A. 5.040 X 10* A. 18.591 +4.57381oKmA.
»8ec.~^ 4.8000 X 10~“» 2.085 X 10-**

»

-47.196 + 4.5738 logioV

« cm.-^ 1.43901. 0.^9u 0.723 +4.5738IogieV

The general equations for the vibrational contribution are

(AIX. 24) Q, - (1-- e--)-*.

(AIX. 25) F, = A,== BTln (1 - e-“),

(AIX. 26) s. = fi[u(e“ - 1)-* - In (1 - e-“)],

(AIX. 27) H, = E,== RTu(e'‘ - 1)-*,

(AIX. 28) Cpw => Crr II « 1 >
If u is small, one: may develop c" *= 1 + w + Jw* + • • • and obtain

(AIX. 25') F, -A, - \ ,
w* u*

,
\

In ti — — H "r * •
' M

, 2 24 2880 /

(AIX. 26') s. -*( 1 — In _L
«* _L ^

“ 24 960
’

(AIX. 27') H, as Er - Br(
< 2 12 720 y

(AIX. 28') Cpr s Cy

For values of u as great as u » 5 the following are valid to one per cent, and

better at higher values of u,

(AIX. 25") p, = A, -=
,

(AIX. 26") S, - B(« + l)«r-,

(AIX. 27") H, - E, - iVToAi-a-* - Srua-",

(AIX. 28") Cjpp ** Cvr *

In Table AIX. 4 the values of the functions for various values oiu^ $ITm
given.
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TABLE AIX. 4

THBBMODTNAlao FONCTIONS OF A MONOCHROMATIC OsCttLATOB

(S/E) + In u.)
^ ew»P«*ited funetioDs are given, i.e., (F/ET) + In « and

c
R

fa--!)! (l-.-»)I +IB»

0.0995

0.9975

0.0950

0.9752

0.9508

0.9269

0.9033

0.8802

0.8575

0.8352

0.8133

0.7919

0.7707

0.7501

0.7295

0.7100

0.6005

0.6715

0.6528

0.6345

0.6166

0.5991

0.5820

1.0000

0.9998

0.0992

0.9967

0.9948

0.9925

0.9898

0.9868

0.9832

0.9794

0.9752

0.9705

0.9655

0.9602

0.9544

0.9484

0.9420

0.0353

0.0282

0.9207

6.9083 0.0005 7.9078 I. 0000

5.3008 0.0025 6.2983 1.0000

4.6102 0.0050 5.6052 1.0000

3.0206 0.0249 3.9957 1.0001

2.3522 0.0496 3.3030 1.0004

1.9711 0.0740 2.8981 1.0010

1.7077 0.0983 2.6111 1.0017

1.5087 0.1224 2.3889 1.0026

1.3502 0.1462 2.2078 1.0038

1.2197 0.1699 2.0549 1.0051

1.1096 0.1933 1.9230 1.0067

1.0150 0.2165 1.8070 1.0085

0.9327 0.2396 1.7035 1.0104

0.8602 1.6104 1.0126

0.7958

0.7383

0.6864

0.6393

0.5965

0.5576

0.5218

0.4890

0.4587

1.6104 1.0126
1.29

1.5257 1.0149
1.15

1.4482 1.0174
1.04

1.3769 1.0202
0.94

1.3109 1.0232
0.85

1.2494
0.78 1.15

1.1920
0.71 1.07

1.1385
0.655 1.01

1.0881
0.60 0.95

1.0406
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TABLE ADC. 4— Con<inuei

tt
B F

0

“T RT A/ BT 8

h¥
!

U tKSSM Att -[-In Au B An

"It (l-«-“)l

1 2 2a 3 3a 4 4a 5 5a

1.05 0.5652
0.33

0.6130
0.16

0.4307
0.52

0.9959
0.84

l.io 0.5489
0.32

0.9050
0.16

0.4047
0.48

0.9536
0.80

1.15 0 5329
0.31

0.8967
0.17

0.3807
0.45

0.9136
0.76

1.20 0.5172
0.30

0.8882
0.17

0.3584
0.415

0.8756
0.72;

1.25 0.5019
0.30

0.8795
0.18

0.3376
0.39

0.8395 1

0.68\
1.30 0.4870

0.29
0.8706

0.18
0.3182

0.36
0.8052

0.65 \
1.35 0.4725

0.28
0.8613

0.19
0.3001

0.34
0.7726

0.62
1.40 0.4582

0.28
0.8516

0.20
0.2831

0.31
0.7413

0.50
1.45 0.4444

0.27
0.8417

0.20
0.2673

0.29
0.7117

0.57
1.50 0.4308

0.20
0.8318

0.20
0.2525

0.28
0.6833

0.54
1.55 0.4176

0.26
0.8218

0.20
0.2386

0.26
0.6562

0.52
1.60 0.4048

0.25
0.8115

0.21
0.2255

0.24
0.6303

0.49
1.65 0.3922

0.24
0.8010

0.21
0.2 i :i3

0.23
0.6055

0.47
1.70 0.3800

0.24
0.7903

0.21
0.2017

0.22
0.5817

0.46
1.75 0.3681

0.23
0.7796

0.21
0.1909

0.20
0.5587

0.44
1.80 0.3564

0.23
0.7688

0.22
0.1807

0.19
0.5368

0.42
1.85 0.3451

0.22
0.7578

0.22
0.1711

0.18
0.5159

0.40
1.90 0.3342

0.21
0.7467

0 22
0.1620

0.17
0.4960

0.38
1.95 0.3235

0.21
0.7354

0.22
O.LWS

0.16
0.4770

0.37
2.00 0.3130

0.20
0.7241

0.23
0. 1454

0.15
0.4584

i 0.35
2.10 0.2931

0.19
0.7013

0.23
0.1303

0.13
0.4234

0.32
2.20 0.2743

0.18
0.6783

0.23
0. 1172

0.12
0.3915

0.30
2.30 0.2565 0.6553 0.1054 — 0.3619

0.17 0.23 0.11 0.27
2.40 0.2397

0.16
0.6320

0.23
0 0948

0.10
0.3346

0.25
2.50 0.2236

0.15
0.6089

0.23
0.0854

0.09
0.3092

0.24
2.60 0.2085

0.14
0.5859

0.23
0.0769

0.08
0.2855

0.22
2.70 0.1944 0.5630 0.0692 0.2637
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u
0

" T

"Lf

E
RT

u
* -1

Au

c
R
ii*e “

-IJ|2 IB
-.4/
Au

1 2 2a 3 3a m 5a

2.80

2.90

3.00

3.10

3.20

3.30

3.40

3 . ,50

3.00

3.70

3.80

3.90

4.00

4.20

4.40

4.60

4.80

5.00

5.20

5.40

5.60

5.80

6.00

6.50

7.00

7.50

0. 1813

0.1689

0.1572

0.1462

0. 1360

0.1264

0.1173

0.0190

0 1011

0 . 09.38

0.0870

0.0806

0.0746

0.0640

0.0547

0.0467

0.0398

0.0339

0.0289

0.0245

0.0208

0.0178

0.0149

0.0098

0.0064

0.0042

0.13

0.12

0.11

0.11

0.10

0.09

0.09

0.08

0.08

0.07

0.07

0.06

0.06

0.05

0.05

0.04

0.04

0.03

0.02

0.02

0.02

0.01

0.01

0.01

0,5404

0.5182

0.4963

0.4747

0.4536

0.4329

0.4128

0.3933

0.3743

0.3559

0.3381

0.3208

0.3041

0.2726

0.2437

0.2169

0.1927

0.1707

0.1507

0.1328

0.1168

0.1024

0.0898

0.0636

0.0446

0.0310

0.23

0.22

0.22

0.22

0.21

0.21

0.20

0.19

0.19

0. 18

0.18

0,17

0.17

0.16

0.14

0.13

0.12

0.11

0.10

0.09

0.0624

0.0562

0.0507

0.0458

0.0413

0.0373

0.0336

0.0304

0.0275

0.0248

0.0223

0.0200

0.0180

0.0148

0.0119

0.0097

0.0079

0.0063

0.0052

0.0042

0.0034

0.0027

0.0022

0.0010

0.0003

0.07

0.06

0.06

0.05

0.04

0.04

0.04

0.03

0.03

0.03

0.02

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.2439

0.2253

0.2179

0.1920

0.1773

0.1637

0.1509

0.1393

0.1286

0.1187

0.1093

0.1006

0.0925

0.0787

0.0666

0.0564

0.0477

0.0403

0.0341

0.0287

0.0242

0:0205

0.0171

0.0107

0.0067

0.20

0.19

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.10

0.10

1 0.09

0.08

0.07

0.06

0.05

0.04

0.04
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Rotation. One defines

(ADC. 29)
Bhe _ h*

kT " 8ir*/fcr

BO that numerically if 7 is measured in o.g.B. units.

(T - 1.4390 ? - 39.698 X
T IT

A In (T 0.723 + 4.5738 log,o
^

- 7.308 - 4.5738 logio (7 X 10f®r),

in calories.

Then, the contribution of the rotational levels j, as a factor to the intern^

partition function per molecule, is \

(ADC. 30) <?j- - Z (2j + De-W+i)* \

iii

For molecules composed of two different atoms of different elements, j takes all

integral values, and for this case,

(AIX. 31) 0j«i « 1 + 3c-**' + Sc-®*' -h Tc-i**' (0.1% accuracy for cr > 0.7)

(ADC. 32) Pj., - Aj., - - RT In

(ADC. 33) S,.!

(ADC. 34) H*., - E,.| - RT^ (6e-*'+ 30e-^+ 84«ri*') (0.1%, <r >0.7)
Vj«i

(ADC. 35) Ci.*., - Cfj«i - R 12e-*'(l + ISe-** + 20*-*'

+ 84s-“' + 175*-“' + 105e-“') (0.2%, a ^ 0.65)

- R (l +^ ^ (0.3%, ^ 0.65).
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At high temperatures, small values of <r, the equations approach the classical

values,

(AIX. 32') * A|„e — firin O’,

(ADC. 33') Sjm« •B(l — Ino),

(ADC. 34') Hj-i = - fir,

(AIX. 35') CpjBl ™ Cp-Jml = fi.

For elements in which the two atoms of the molecule are identical, j in (30)

takes only even or only odd values. Which of the two it takes depends on the

atomic weight and mutual nuclear spin of the atoms, as well as upon some
other factors. At high temperatures, for which (32') to (35') are valid, this

has only the effect of adding a term due to the symmetry of the molecule,

Ziym. to the thermodynamic function X. These additive contributions for

diatomic elements are

(AIX. 36) Fiym. ^ Asym. » JtT In 2,

(AIX.37) Siym. = -A In 2,

(AIX. 38) Hiyin. ~ Xaym. — CAym. = Cytym. — 0,

Since <r is small above the boiling point for aU diatomic elements except H2 ,

the classical equations (32') to (35') plus the symmetry terms (36) to (38)

usually suffice. It is also only for these cases of small <r values that the nuclear

spin and isotope mixing terms are given for an element by equations (14) to (19).

It is practically only for H2 that the detailed summations of (30) with only

odd and only even j values are of interest. Equations for this case are given

in section 7b. Values of the functions for various values of a are given in

Table AIX. 5 for the case that the sum goes over all values of j, and in Tables

AIX. 5a and AIX. 5b, respectively, for the cases that only even and only odd

j’s occur.
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TABLE AIX. 5

Rotator Functions for Diatomic Molbculsb

WITH Two Dipfxrsnt Atoms

(All J values allowed)

^Bhc ^ h*
' “ tr " &w*IkT

9 Qjml
InQjai

- -FWfiT -

Cjmf

R

0.02 60.0007 3.9187 0.9933 1.0000 !

25.0134 3.2322 0.9866

16.6869 2.8334 0.9799 1.0001

12.5271 2.5525 0.9732 1.0002 1

0.10 10.0508 2.3360 0.9664 1.0002 '

0.15 6.7432 1.9475 0.9495 1.0006

0.20 5.3476 1.6766 0.9324 1.0010

0.25 4.3508 1.4704 0.9151 1.0016

0.30 3.6883 1.3052 0.8976 1.0025

0.35 3.2155 1.1680 0.8802 1.0034

0.40 2.8623 1.0516 0.8624 1.0047

0.45 2.5885 0.9511 0.8445 1.0061

0.50 2.3703 0.8630 0.8263 1.0084

0.60 2.0455 0.7156 0.7892 1.014

0.70 1.8164 0.5968 0.7702 1.024

0.80 1.6473 0.4992 0.7110 1.038

0.90 1.5186 0.4178 0.6691 1.055

1.00 1.4184 0.3496 0.6252 1.0733

1.1 1.3392 0.2921 0.5797 1.0879

1.2 1.2759 0.2436 0.5330 1.0968

1.3 1.2249 0.2028 0.4860 1.0955

1.4 1.1855 0.1702 0.4388 1.0787

1.5 1.1500 0.1397 0.3945 1.0568

1.6 1.1226 0.1134 0.3515 SSH
1.7 1.1003 0.0956 0.3111

1.8 1.0821 0.0789 0.2737 BSSH
1.9 1.0672 0.0650 0.2396 m
2.0 1.0549 0.0535 0.2087 0.7940

2.2 1.0368 0.0301 0.1564 0.6651

2.4 1.0247 0.0244 0.1157 0.5424

2.6 1.0165 0.0165 0.0847 0.4332

2.8 1.0111 0.0111 0.0614 0.3404

3.0 1.0074 0.0074 0.0443 0.2638
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TABLE AIX. 5a

Rotatob Functions for Diatomic Molrcuurb Which Havr

Two Identical Atoms and fob Which Only

Rotational Levels

WITH Even j Are Allowed

a Qjmi
bQi..

" -Eieu/ET

Cjm»

R

6.2636 1.8593 0.9732Bh 5.0254 1.6429 0.9664

3.3716 1.2543 0.9495

2.6739 0.9835 0.9318

0.25 2.1766 0.7778 0.9098 1.040

0.30 1.8492 0.6148 0.8772 1.117

0.35 1.6205 0.4827 0.8290 1 287

0.40 1.4566 0.3761 0.7639 1.3428

0.45 1.3371 0.2904 0.6859 1.4287

0.50 1.2493 0.2218 0.6010 1.4648

0.60 1.1367 0.1281 0.4332 1.3770

0.70 1.0750 0.0723 0.3254 1.1458

1.0411 0.0403 0.1897 0.8748

0.90 1.0226 0.0223 0.1193 0.6298

1.00 1.0124 0.0123 0.0734 0.4353

1.10 1.0068 0.0068 0.0446 0.2923

1.20 1.0037 0.0037 0.1921

1.30 1.0020 0.0020 BhB 0.1241

1.40 1.0011 0.0011 0.0791

1.50 1.0006 0.0006 0.0499
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TABLE AIX. 6b

Rotator Fungtionb for Diatomic Molecui4Bb Which Havb

Two Identical Atoms and for Which Only

Rotational Levels

WITH Odd j Are Allowed

State j
B 0 is assumed to have zero energy, bo that lowest energy per molecule

for j * 1, is € * 2<r7’.

Ejao(0®K.) - Sj«o(0®K.) - Rln3.

or Qimo

In Qimo

* —Fjaio/RT

In Ota.

«Ejn»fl/RT

Cj.o

R

L

6.2636 1.8593 0.9732 n0.10 5.0254 1.6429 0.9664

0.15 3.3716 1.2543 0.9494 HH
0.20 2.6737 0.9835 0.9332

0.25 2.1742 0.7766 0.9204

0.30 1.8390 0.6092 0.9182 0.8869

0.35 1.5950 0.4469 0.9322 0.7705

0.40 1.4057 0.3405 0.9645

0.45 1.2513 0.2242 1.0138 WBSSM
0.50 1.1210 0.1142 1.0774

0.60 0.9088 -0.0956 1.2345 BBH
0.70 0.7414 -0.2993 1.4149

0.80 0.6062 -0.5006 1.6063 0.0500

0.90 0.4960 -0.7011 1.8026
1

0.0233

1.00 0.4061 -0.9012 2.0010 0.0106

Hig^-Temperature Corrections. At higher temperatures, when hvIkT = u

becomes unity or smaller, correction terms must be added owing to the

anharmonicity of the vibration and the increase of the moment of inertia with

increasing j and v values. Especially for molecules containing hydrogen atoms

these corrections are important even at relatively low temperatures, tliat is,

for moderately large values of u.

The energy of the molecule as a function of the quantum numbers v and j

is usually given in one of the alternate forms:

(AIX. 39) +
he .

+ (v + i)ja + i)«,

(AIX. 39') «= vwo - *a:oWo + i (i + 1 )ft
he

-i*(j + l)*2).-vj(j + l)«,
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(ADC. 39") - T(T - 1)*V + J(J + l)Bo

The rdationships between «„ uo, and «*, x„ xe, **, and B, and Bt are

(ADC. 40) «* « Wo — Xgwo •= W, — 2ZaW«,

(ADC. 41 ) u*x* = wqZo * WtXt,

(ADC. 42) Bo-S.-§a.

The quantity x must be known from experimental data, but a and D, depend
on the values of w, B, and z, as follows:

(ADC. 43)

(ADC. 44)

©[(¥)-']

2 \Be/ U)g U

Actually, the experimental value of a is often given and does not agree perfectly

with (43), which is probably because the experimental value is averaged over

highe approximations to the true energy formula than (39).

For diatomic gases at high temperatures the following procedure may be

employed. and Xja are calculated with the aid of the equations in the

preceding paragraphs, using of* and Bo to calculate u and <r. The following

correction terms are then added.

The negligible difference between Xg, xo, and x may be neglected, and any of

them used for x. y is, from (44), just <r/w. Then,

(AIX. 45)

(AIX.46)

(AIX. 47)

(AIX. 48)

Fc « BT
j^- ^

(27 + 67'^V'* + 2x) - (37 - 37*

-

2x)

-
I
(-3t + + 5*) + f ® ^ (-y - V'V'* + z)

S. = ft (4t + 12V«z‘'* + 4z) + (3-r
- - 2z)

+ T® “ ^ ~ + j) 4. . .

.

1

.

O OU J

H. = E. = ftr fi (27 + 67‘'V'* + 2z) - ^ (-37 + 2nt^>V*
Ltt D

+ 5z) + |z - ^ (7 - 7'«*>'* + *) + ••]•

C,.-Cv.-ft[^i (47 + 127‘'’z*'‘ + 4z) - - z
3

+ ^(T-7‘'V/* + z) +
20
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if) Xi far Polyaiomic Gases

The total number of degrees of freedom per molecule is 3n if n is the number
of atoms in the molecule. Of these, three are accounted for by the translation

of the center of gravity, and either two or three, depending on whether the

molecule is respectively linear or non-linear, will be degrees of freedom of rota-

tion. Linear molecules will have 3n — 5, non-linear molecules 3n — 6, degrees

of freedom due to vibration. If the 3n — 5, respectively, 3n — 6, frequencies

are known, several of which may be numerically identical, each contributes a

term X, to Xi, with the appropriate value of u substituted in equations (25) to

(28).

If the molecule is linear, Xjm will the be same as for a diatomic molecule with

the same moment of inertia. The moment of inertia 1 is given by

(AIX.49) /“Lmitxi,
k^X

where tnjb is the mass of the kth atom and Xk its distance from the center

mass. The center of mass is so determined that

k^n

k^l
0

if the sign of xu is taken into account.

If the molecule is non-linear it will have three moments of inertia, A, J8, C,

two of which, or even three of which, may be identical. The moments of

inertia may often be calculated with considerable accuracy from a knowledge

of the geometry of the molecule, using accepted interatomic distances. With

the exception of a few hydrogen derivatives at very low temperatures the

moments of inertia are large enough so that a purely dassical approximation is

sufficiently accurate for the rotational contribution.

The equations for the contribution of the three rotational degrees of free-

dom are, if the moments of inertia are measured in c.g.s. units;

(AIX. 50) Qiot.

(AIX. 51) Ffot.
. »m. / V'* 1"*"* InVSirW/ {rABCyi*

- BTI-t In r - i In {ABC X 10»“) + 4.946].

(AIX. 52) Snot. - B In (^^!^y'\wABCyi* -

- Bit In T + } In {ABC X 10««) - 3.446).

(AIX. 53) Oat. =. En*. - iRT.

(AIX. 54) Cj» IM. — Cr Ml. “ t®*
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AX. The Coefficient of the TennlljS^ in 6f

The cluster integral, 6/ (equation 13. 5), is the integral over the configuration
space of I particles of a sum of products of functions /,/ between the particles
i and j\ The sum goes over all products for which all the particles are at least
singly connected by /'s. The integral is normalised by division with I ! V.
A product in which two groups of molecules are only singly connected, that is,

have one molecule in common, but no /’s connecting other molecules which are
in different groups, splits into a product of two integrals. A sum of certain
terms in the integrand of 6| may thus be represented as a product of irreducible

integrals fit, each raised to the power nt, with ]Eknk = / — 1. The fftB are
defined by equation (13. 25) ; they are 1 /k ! 7 times the integral over the space
of k + 1 particles of the sum of all products of /i/s in which all the particle
are more than singly connected hyfa.

If the symbol s is used to designate a certain set of the numbers tik, one has,

then,

(AX.1) 6| = n2^K.n(k!|8k)"«
c I # k
Zknk-I-l

in which the numerical coefficient Kg gives the number of terms in the inte-

grand of 6| which after integration yield lIjSk*'- The I ! and k 1 in this equation

arise from the inclusion of these factors as normalization factors in the integrals

bt and respectively. The determination of this numerical coefficient Kg is

the problem of this section,*

Consider a cluster of ! molecules. Corresponding to any product of /</b

consistent with a single cluster, that is, any term in the integrand of equation

(13. 5), it has already’' been shown that a diagram may be drawn with a line

between the circles i and j symbolizing the function So the problem of

finding how many times a given product of jSk’s occurs in the integrand of b|

reduces to a problem of finding how many lines may be drawn between num-
bered circles in a certain pattern. According to the formal development, there

is no restriction on the number of bonds originating at any one molecule except

that only one line may be used to connect each pair.

First a remark is to be made concerning the bond patterns corresponding to

fits for which k > 2. Each such /3k is a sum of Jk(k — 1) terms /3kmi since

k + 1 points may be connected by k -f 1,
•

•
, ik(k + 1) lines and still

have all points more than singly connected. For example, fii contains integrals

corresponding to the six patterns of Fig. AX. 1. Each of these integrals will

occur in /3k with a coefficient representing the number of different permutations

of the numbered molecules giving the same dia^am when the numbers on the

circles are neglected. The coefficient of the last pattern, that for which all the

circles are connected directly to every one of the k other circles, in the integrand

of /3k is always unity, since this diagram can be drawn in one way only. The

coefficient of the total Il/Sk^k in bt, however, will be the same as that for the

* The method of calculation which follows is copied with minor alterations from

the *Mw^rtation of S. F. Harrison, Johns Hopkins University, 1038.
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patterns with every molecule in the Ac’s connected to every other one. So the

coefficient of in can be obtained by considering only the completely

connected patterns for that is, by treating the k + 1 molecules in j9k as

identically situated with respect to ea^ other.

In order to make the problem easier to visualize, the bond patterns corre-

sponding to the various integrals may be imagined to be rigid mechanical

frames, with a frame of index k containing k + 1 symmetrically situated holes.

Fio. AX. 1. The different terms occurring in fii. It is to be noted that some of

the |9km*8 are themselves a sum of terms, since the nature of the integral is not com-

pletely defined by the number of particles and the number of bonds.

(This is, of course, a physical impossibility in three dimensions for most large

k values, but that is an unessential fact.) The I molecules will be replaced by

I numbered bolts, which will serve to fill the holes in the frames and to bolt the

frames together into a single cluster. It is fairly easy to see that such a struc-

ture will correspond to a term in the cluster, and that the problem of the number

of ways in which the bolts can be inserted in the frames so as to obtain one

cluster is equivalent to the problem of the determination of X«.

It is now necessary to find out how many ways the bolts can be put into the

frames and the frames bolted together.

There are given I numbered bolts, and a total of n — frames, with, for

every k, (1 < k < / — 1), nk frames containing k + 1 identical holes which

are situated in such a way that every pair of holes m one frame is exactly like

every other conceivable pair in the same frame. The restrictions under which

the bolting process must be carried out are:

a. 1 + ilCknk — I,

k

b. Every hole must have a bolt through it.

c. No bolt can go through more than one hole in any given frame.

d. The frames must all be singly connected with each other.

Summarizing, there are:

]C(k+ l)nk holes,
k

£knk + 1 f bolts,
k

2)nk » n frames.
k
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The excess of holes over bolts is therefore

E(k + l)nk — JJkrik — 1 = n — 1,
k k

so that, if a washer is placed between every pair of frames which are bolted
together by a common bolt, exactly n — 1 washers are necessary. At most,
then, n — 1 bolts are used to connect frames together, and at least one bolt.

If only one bolt is used this one bolt must pass through a hole in every frame,
and will pass through all n — 1 washers.

Now consider an arrangement which is completely bolted together, corre-

sponding to a term in the cluster integral This is to be dissociated, or taken
apart, into n frames, each frame of index k containing k bolts and one empty
hole, with one free

”
bolt left over. By choosing the free bolt and removing

it first, the method of dissociation is uniquely determined, and since any of the

I bolts may be chosen as the free one there are I different dissociated arrange-

ments of the bolts in the frames corresponding to every arrangement which is

completely bolted together.

That is, if is the number of different dissociated arrangements which can

be formed, and Mg the number of ways in which each dissociated arrangement

can be bolted together, the coefficient sought is

(AX. 2)

since there are always I different dissociated arrangements which can be bolted

together so as to form the same completely bolted arrangmnent.

The number L, is the number of ways in which the I numbered bolts can be

assorted into Uk piles of k objects each, with £knk » f — 1, with one free bolt

left over. This number is, see AVIl (6),

(AX. 3) L.
n

nOtO'knk!’

so that, from (2),

(AX. 4) K.
1 M
1 n(kl)"knkl

It will now be shown that the number of ways M, that the dissociated arrange-

ments can be bolted together is

(AX. 6) M, - I—>.

As has already been stated, in a cluster there are certsin bolts com^n to

two or more holes in different frames. To these bolts a particular significance

attaches. Defining the “ significance ” X (rf a bolt as one less than the numbw

of frames to which it is common, then this " significance ” of a bolt is numeri-

cally equal to the number of waishers throufd^ which it passes, if, as has been

suggested, we use a washer to separate every pair of frames which are bolted
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together. The wariiers are the physical objects by which we may visualise the

significance of the bolts.

The number of bolts with a significance X will be designated by and since

the total number of washers is n — 1,

(AX. 6) « n - 1.

X

Now, if the washers are numbered and distributed among the bolts (a bolt

receiving no washers is used in one frame only, and one receiving one washer is

used to bolt two frames together, and so fortii), then each such distribution of

the numbered washers among the numbered bolts corresponds to exactly one

way of making a dissociated arrangement into a cluster. When this statement

is proved the problem is solved, for the number of ways that the n — 1 washers

can be distributed among the I bolts, with no restrictions as to the number of

washers per bolt, is just
\

Obviously two distributions of washers which differ in the numbers of washers '

per bolt can never lead to the same way of bolting the frames together. How-

ever (n — 1) l/n(X !)*^ arrangements of the n — 1 numbered washers corre-

spond to the same set of values of the numbers of washers on every bolt. We
shall prove that, if the numbers X of washers per bolt are given, the number of

different ways in which the frames can be bolted together is just the same as

this, namely, (n — 1) VHCX 1)*'^. It follows that the total number of ways in

which the frames can be bolted together is the same as the number of ways that

the numbered washers can be distributed among the numbered bolts, namely,

Consider a dissociated arrangement in which the number of washers on each

bolt is determined. We select one of the bolts (other than the free bolt) con-

taining one or more washers, say Xi washers. This bolt must pass through the

empty hole in Xi frames other than its own. These frames can be chosen in

(n — 1) (n — 2) • •
• (n — Xi) /Xi ! ways, the factor 1 /Xi I arising from the fact

that the order of choice is immaterial. This complex of Xi + 1 frames will

then be an incomplete cluster still containing precisely one unoccupied hole,

and for the bolting process is exactly equivalent to a single frame.

The next bolt chosen, with X2 washers, can now join Xs frames in (n — Xi — 1

)

(n — Xi — 2) • •
• (n — Xi — X2) /X2 ! ways, since the formation of the first com-

plex has reduced the number of separate units to n — Xi. This process is

repeated until a single unit corresponding to a term of the cluster has been

formed. The free bolt causes no difficulty.

If the free bolt, which is put in as the last step, has no^washers, the proof is

complete, since at the end Aere will remain only one hole into wUch this bolt

must go. If the free bolt has been assigned Xf 9^ 0 waidiers there is also no

dioice since at the end there will remain Xf + 1 incomplete clusters with as

many unoccupied holes through all of whidi the free bolt must pass. This unit

choice is numerically Xf !A/ ^ which completes the series of factors.

We have proved, then, that the number of ways that the frames can be bolted
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together numbers of washers on each bolt Have been assigned is

(n — 1) !/n(X which is the same as the number of ways that the num-

bered washers can be assigned to the bolts with a predetermined number to
each bolt. It follows that the total number of ways that the frames can be
bolted tog^theTi which is M*. is the total number of ways that the numbered
washers can be assigned to the bolts, or

Equation (5) is thus proved. Inserting this in (4), and the result in (1).

one obtains

(AX. 7) =
« nic k Ttk !

which is equation (13. 34).

AXI. Application of the Theory of Functions to the Functions Appearing in the
Theory of the Imperfect Gas

'Ve shall apply the theory of functions of a complex variable to the series

occurring in the development of the partition function of an imperfect gas.

A function of a complex variable, /(r), is said to be regular at a point 2 = f
if it is finite, continuous, and differentiable. This latter condition implies

certain relations between the differential coefficients of the real and imaginary

parts of f(z) with respect tc» the real and imaginary parts of 2 . If a function is

regular in a region, and if f is any point inside the region, f{z) can alwa3'^s be

developed as a power series of (2 — f), containing |>ositive and zero i>owers

only. The coefficient On of (2 — is

(Axi.i) *

?i!L02"

There exists a real quantity R, called the radius of convergence (which may be

infinity), such that the series converges for all points z inside the circle

I
2 — f I

=s R around f ,
and diverges for all points outside, /(z) is regular within

the circle of convergence, but is not regular, that is, it has a singularity, at one

point, at least, on the circumference of the circle.

If the region of regularity is singly connected (comprises the whole region

enclosed by one closed curve) and C is an3' closed curve within tl)e region, the

integral ^f(x) dz taken over C is zero (theorem of Cauchy).

Suppose that a function is regular and single valued in a region except in one

inner point of the region, which we may take as the point 2 = 0. In that case

f{z) may be developed into a power series of direct and inverse powers of 2
,

00

(AXI. 2) m = s
n» —00

(Laurent aeries). If there are no inverse powers, a, - 0 forn < 0, /(r) is

regular at s = 0. If there are a finite number of inverse powers, a, 0 for

« < m< 0, but o„ 0, the function is swd to have a pole of order m at
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2 = 0. If there are an infinite number of terms with inverse powers, /(s) is

said to have an essential singularity at s = 0. The series converges outside bf

2 = 0 and inside the circle about 2 = 0 which contains on its circumference the

nearest point of irregularity of /(r).

The integral of the function taken over any circle around 2 = 0 within the

circle of convergence has the value 2irtd-i, where o-i is the coefficient of in

the Laurent series, o-i is called the residue of the function.

The general coefficient a» of the Laurent series is then equal to the integral,

taken over any circle about 2 = 0 within the region of convergence,

(AXI.8)

for positive or negative values of n. I

If the circle or closed curve over which the integration is performed enclosesl

two or more isolated points of singularity the value of the integral is 2iri times

the sum of the residues of the singularities.

If the coefficients On of the power series development of the function are all

positive, the radius of convergence R can be obtained according to the theorem

of Cauchy-Hadamard as

(AXL4) R= lim
fi-^oo

These theorems will be used to investigate the functional dependence of

Qr/Nl on 6|, equation (13. 10), and of 6| on fitf equation (13. 34). The
method which will be used follows closely that of Bom and Fuchs.*

The function F(N,xi, • •
• ,Xk, • • • )i defined as

(AXI. 5) F(N,x) - S n '

Ilk k Tlk!

2lCik-iV

is of the same form as equation (13. 10) for Qr/AT !, with v6| replaced by Xk.

By inspection one sees that this function is the coefficient of in the develop-

ment of

into a power series of f", and therefore, from (3),

(AXI. 6)

where the path of integration must enclose the point f = 0.

We shall define a function ffo(z,xi, • •
• ,xt, • •

• ) bb

(AXI. 7) HJ(2,x) = £ F(N,x)z^,
N^l

* Max Bora and K. Fuchs, Froe, Roy. 8oe.f Londar^ AlfiS, 301 (1038).
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aod prove that

(AXI. 8)

APPENDIX 461

where fo is defined by

(AXI. 9) z = foe“2:j5kfo.

The theorem is proved by using equation (6) in (7). For small enough
values of z it will be shown that the path of integration of f can be chosen so

that always

(AXI. 10) < 1,

in which case the summation in (7) can be performed before integration. After

introducing (6), the right-hand side of (7) before integration is just l/2]rif

times the sum of all powers greater than zero of the quantity in (10). If rela-

tion (10) is obeyed the sum converges and may be expressed analytically by

so that

(AXI. 11)

i:
N-l

-JL_,
i-y

Hl(z,x)
1 f 5^.

2jri«/ f — f

Just as the residue of the original exponential which is FiN^x) was expressed

as the integral in (6), so now we shall reverse the process and calculate the

integral of (11) by determining the residues of the singularities enclosed by the

path of integration. The function which is the integrand of (11) has two

singularities enclosed by the path of integration, namely, where f 0, with

the residue —1, and a singularity at fo where equation (9) is satisfied. The

residue of the singularity at fo is obtained by inserting the derivative of the

denominator in (11), and with (9) this gives

1

1 - 2>*^kfo

for the residue. Adding —1 for the residue at f — 9 to this proves (8),

provided there is one and only one i)oint fo inside the path of integration for

which (9) is satisfied.

The function

i-

has a pole of the first order at J-
» 0. This pole is surrounded by curves along

which the absolute value of the function is constant. Provided this absolute

value is sufficiently hi^ these curves are closed around f * 0. Therefore if
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z is sufficiently small we can choose the path of integration according to condi-

tion (10) just outside the curve along which

in such a way that there is only one such curve inside the path of integration.

On this curve there is one and only one point for which (9) is satisfied. Since

(8) is proved for small values of z it will be true in general.

If in equation (5) the quantities are replaced by vbi the functions F(N,vb)

are just the quantities Qt,nIN I
,
equation (13. 10), for systems of N mole-

cules, but with the same volume per molecule v.

Consider the sum
,

(AXI. 12) £ = »!!(»•.«*)
AT-i ATI 1 — ^Ivbisf

where, corresponding to (9),

(AXI. 13) r =

The configuration integrals Qt,n are all integrals of a positive integrand, and so

are all positive. The first irregularity of the sum (12) must occur on the real

positive axis of r, say at r » R, and R is then the radius of the circle of con-

vergence of (12). From (4)

(AXI. 14) -InR.

The radius R of the circle of convergence of the sum (12) detennines the

quantity we seek, namely the limit, as N approaches infinity, of

~(l/iV)ln(Qr.w/Ar!),

which is the contribution of the configuration integral to the work function per

mole divided by RT, ArIRT.
If Z is the value of z when r ~ R, according to (13) one has

(AXI. 16) ^ = In R - InZ - L I»6|Z',

which is the same as equation (14. 20). However, in this equation Z is defined

as the value in (13) corresponding to the radius of convergence R of (12).

From (13) it is seen that, when r » 0, then s » 0, and-that, for small values

of z and r, the real positive axis of r corresponds to the real positive axis of s,

as well as the converse, since all &f’s are real. As long as the function ^vbpf is

both regular and smaller than unity, (12) converges, and if reaches

unity is it seen that (12) is singular, and it will he proved later that if

is singular the sum Hl{r,vb) is singular. With this proof we have

what is needed.
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We consider a region enclosing the real positive axis of z and r. The singu-
larity in Hl(r,vb) determining the radius of convergence R of (12) lies on this

axis. It occurs at the smallest real positive value of r, which we have called Z.
for which either condition a, that

(AXI. 16a) LfrfeiZ* « 1

or condition b, that

(AXI. 16b) is singular,

is fulfilled. Since bi is unity, condition a will obviously be fulfilled at lower
z values than 6 if the volume per molecule v is sufficiently large. The value of

Z for which condition a is fulfilled will depend on the volume v. At sufficiently

low values of v condition b may be fulfilled before a, and the value of Z deter-

mined by this condition will be independent of the value of the volume per

molecule v, since this quantity is only a factor in the sum.

The result is essentially the same as that found in Chapter 14. There we
explicitly considered a system with a large but finite number, N, of molecules.

As a consequence the series ^vb0 had a finite number of terms, N, instead of

an infinite number, as here. The finite series has no singularity, but two types

of solution to the equation (16), which was used to determine Z, were found.

The first type of solution, which led to the equations for the imperfect gas,

corresponded to the case here that condition a is fulfilled before the series

becomes irregular, and was characterized by the fact that only the lower mem-
bers of the series were important at the solution. In the second type of solu-

tion, at low volumes, and corresponding to the condensation range, the series

value increased so rapidly with z in the neighborhood of the solution, because of

the importance of the terms of high I values, that the solution was practically

independent of the volume. This solution corresponds to the condition b on

the infinite series.

The proof that (12) is singular if the sum ^IvbjZ^ has an irregularity will

follow later. We ^all now undertake some mathematical juggling to arrive

at the virial development.

There are several functions similar to HJ(z,x), defined by (7), which we shall

have occasion to use. The functions defined as

(AXI. 17) HiM - £ 4
am aeen to be obtained by

(AXI. 18) H!(*^) y •

By further integration the memben of hi(^ X value may be calculated.

i^(»n (9)

(AXI. 19)
f



464 AITENDIX [SM.AZI

Usiiig tiiis in (18) with (8) for one obtains

(AXI.20) r^*Dctkf*? “
Jo f

We further define

The differentiation is to be carried out at constant z, but the functions Hi are

expressed in terms of (q. We use (9) to obtain

z fo

so that, at constant z, dz « 0, and

(AXI. 22) 1(^\ fo

fo 1 — Z)hXk{o

Writing, then,

and with (22) one obtains from (21),

(AXI.23)

Applying this to (20) for Hi(z,x),

(*xi. 24) - r. + I>4rt . _ •

Repeating the process indicated by (18), which also applies to the calculation

of H\{z,x), and uring (19) and (24), one finds,

(AXI. 25) H\M = r/fj(s',x) ^ - r^dS; - fo.

«/0 z «/o

=
J|^*H‘(s',x)y - J^^*(l

- lW‘)dr

Repeating again

(AXI. 26) HIM
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The reason for this interest in the functions IP{z,x) is as foUovs. Direct

diffet«itiation of equation (5) for F{Nfl) shows that

(Axi. 27) 1 ± F(N.x) - r n
iV OXi njk k »

2knk-i^-l

and this expression is seen to be exactly that of equation (13. 34) for n^if N
is replaced by I, and Xt by /3k- The sums which occur repeatedly in the discus-

sion of the imperfect gas are then

(AXI. 28)

where y is defined

(AXI. 29) z^ye-^^.

From (26), (25), and (24),

(AXI. 30) Zvbt^ -
«1/

(l - Z •

(AXI. 31) 'D.vb/ = vy,

(AXI. 32) LPi*,?' = ^ E

.

I 1 - 2>/3sy‘‘
k

The variables y and z are related by equation (29), which is identical in form

to equation (13) relating z and r. Just as with z and r, the point y = 0 corre-

sponds to z B 0, and the real positive axis of the one variable corresponds to

the real positive axis of the other.

Since the sums are related to each other by

(AXI. 33) ZfW = « -r
oz

it follows that if one of these sums is singular so are all the others. The same

statement holds for the sums
If the functions are regular, and if is smaller than unity,

it is seen from equations (30) to (32) that the functions are regular.

If E^kV^ becomes unity, is singular from (32). The fact that if

becomes irregular the sums are singular will be proved later.

We consider a region of the y space enclosing the positive real axis of y for

smaller values than that for which any of the three conditions are fulfilled on

the real positive axis:

(fit) y = v-\

OJ) = 1,

(T) Zk'/3fcy'‘ = singular
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The corresponding region of z includes the real axis of z with smaller values

of z than those which fulfill either condition a that be unity, or condi-

tion h that this function be singular. The corresponding region of r therefore

includes the real axis for lower values than the radius R of the circle of con-

vergence.

We noV move out along the real axis of y until one of the three conditions

(a), 0), or (y) is satisfied. The corr^ponding value F of ^ in (29) gives the

value Z of z for which either condition a or 6 is fulfilled, and the variable r has

reached the value R on the circumference of the circle of convergence of (12 ).

At sufficiently large values of the volume per molecule v, for all temper-

atures, condition (a) for Y must be satisfied at lower values of the variable

than either (fi) or (y). From (31) and (16) it is seen that then condition a for

Z is satisfied. These large volumes, for which l/via smaller than the value of y
that satisfies either 03) or (7 ), are the volumes for which the system is com-

1

pletely gaseous. Equations (30) to (32), with F » v, are then seen to lead to
'

the equations of Chapter 13, and the virial development for the imperfect gas

is proved.

If, at F » p, either condition 03) or (7 ) is satisfied, then for v < « p”*,

the value

(AXI. 34) Z =

from (29), determines the value ofZ for which the sums ^l^vb/Z^ become irreg*

ular on the real positive axis, and the quantity r has attained the value R, the

radius of the circle of convergence of (12 ). These volumes correspond to the

region of condensation.

The temperature Tm, above which condition (j3) is fulfilled before (7 ), and

below which (7 ) is satisfied before attains the value unity, has been

discussed in Chapter 14. With equation (34) determining Z, and p determined

by condition (0) or (7 ), the equations for the system are essentially those of

Chapter 14.

The fundamental difference between the language of this section and that in

the main text is caused by the fact that here we have gone over to the limiting

case of an infinite number of molecules, so that all the series involved contain an

infinite number of terms instead of a ^ite number. The proof presented here

does not assume positive values for the integrals bg or so is more general

than that of Chapter 13. Also, whereas the equations for tlie virial develop-

ment of the gas were proved out to only a limited number of terms in Chap-

ter 13, they are here shown to be general.

One real difference between the results here and in the text is present, however.

If the integrals h| or are not all positive the series and mig^t

diverge owing to a singularity off the real axis, before the singularity on the real

axis corresponding to the radiusR of the circle of convergence of (12) is reached.

Since the coefficients of (12) are necessarily positive, the singularity of this

function which determines the circle of convergence is certainly on the real

positive axis of r, but the same statement does not necessarily hold for the func-

tions and In this case the analytical continuations of these
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functions on the teal axis must be used to determine the first singularity occur-

ring with real positive t or y, respectively. This possibility appears rather

unlikdy. It would mean, working with the series of finite number of terms,

that the coefficients 6{ andh alternate in sign, but the term values increase in

magnitude with mcreasing f or k in such a way that the value of the sum would

depend entirely on the I or k value at which it was terminated.

It remains to be proved that if the functions are singular on the

real positive axis the functions are singular; and also that is

singular if is singular on the real positive axis.

This may be proved as follows. It is to be remembered that //S(r,tfb) is

r(d/dr)fii(r,o&), so that, if one function is singular, so is the other. Similarly,

from (33), if one of the functions is singular it follows that the others

are angular. The same relationship holds for the functions £k'j9|,v^

From (20) it is seen that the function is singular if is smgu-

lar, unless ^/dr 0. From (30) it follows that are singular if the

functions singular, unless dyjdz « 0.

We must now show that neither dz/dr — 0, nor dyfdz = 0 can occur on the

real positive axis of r, knowing that the radius R of the circle of convergence of

(12) is determined by a angularity for real positive values of r.

From (13) and (20),

(AXI.35) « =

(AXI.36) +
2 dr

From (36) one sees that dzidr can be zero only if Hlir^vb) is minus unity, and

since the coefficients of this function of r are all positive this cannot be the case

if r is real and positive. This proves that dz/dr ^0 on the real ix)sitive axis

of r.

To prove that dy/dz 0 for real positive values of r we use (31), from which

(AXI. 37) ^ mil JJvbff = i
dz V dz vz

Now from (12)

(AXI. 38) r^Hj!(r,!)i)
dr (1 - D«V)* r

~
(1 - Dvb^)’

Again the fact that the coefficients of IIt(r,vb) are positive is used to deduce

that the derivative with respect to r cannot be sero, and consequently that the

sum cannot be sero, on the real poative axis of r. This proves, with

(37), that dy/dz ft 0 for real positive values of r.
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AXIIL Physical Constants

These values were calculated by J. 0. Hirschfelder from those compQed by

R. T. Birge, Physical Review Supplement, July, 1929, and the revised values

of e, h, and elm given by R. T. Birge, Phyrical Review, 62
,
241 (1937). The

last figure given is usually not significant.

Velocity of light c-2.9»796 XlO“cm.eeo.“‘

Charge on election e 4A02 9 X l(r**abs. ej.u.

Hanck’s constant 6 - 6.626 X ir” erg sec.

t 1.0546 X.ir” erg sec.

Mass of electron m, - 9.110 X ir**gram

Mass of hydrogen atom Mh - 1.6733 X ir“gram

Ratio
— = 1836.8

Ratio, charge to mHiw of electron — « 1.7585 X 10*abe.ojn.u.gm.~*
nit

Boltsmann constant il 1.380 4 X 10~** erg deg."* molecule"*

Avogadro’s number No 6.023 X 10** molecules mole"*

Number of molecules per cubic centime-

ter in a perfect gas at 0®C. and 1 atm. = 2.687 X 10** cc."‘

Volume of perfect gas at 0**C. and 1 atm. » 22.414 1 liters mole~*

Gas constant per mole R = 1.986 4 cal. deg.-* mole"*

“ 82.07 atm. cm.* deg."* mole"*

F - 96489ab8. coulombs gm.-eqiuv.-*Faraday constant

s 96 494 int. coulombs gm.-equiv."*

Normal acceleration of gravity g » 980.665 cm. sec."*

Normal atmosphere » 1.013249 X 10* dyne cm.-*

Temperature of melting ice, 0*’C. = 273.18‘'K.

Density of mercury (0®C. and 1 atm.) = 13.696 09 gm. cmr

Radius of first Bohr orbit Co 0.5291 Xir* cm.

Retiprocal of fine structure constant < 137.044

eh

Bohr magneton fi
*

4fin«c

= 0.92726 X KT*® erg gauss"



AXIV.

Conversion

of

Energy

Units

The

following

are

all

used

as

energy

units:

erg^

the

fundamental

unit

of

the

c.g.s.

system;

joule,

10^

ergs;

calorie,

the

heat

required

to

raise

1
gm.

of

water

1°C.

at

15®C.;

kilocalorie,

10®

calories;

frequency

in

8ecr\

the

energy

of

a

photon

of

that

frequency;

wave

number,

in

cm.'"^,

the

energy

of

a

photon

of

that

wave

number;

volt,

the

energy

of

an

electron

accelerated

through

that

number

of

volts;

degree,

the

energ>'

divided

by

k\

atomic

units,

the

energy

in

units

e^/aa^

twice

the

ionization

energy

of

a

hypothetical

hydro-

APPENDIX
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AXV. Greek Alphabet

A a Alpha N Nu

BU Beta Xi

Vy Gamma Oo Omicron

AS Delta Hit Pi

Ee Epeiion Pp Rho

zr Zeta E(r Sigma

Hn Eta Tt Tau

6^9 Theta T u Upsilon

1

1

Iota $ ^ ^ Phi

Kk Kappa Xx Chi

AX Lambda Psi

Mm Mu Q u Omega



GLOSSARY OF SYMBOLS

The Jjewis and Randall notation, H, A, A, and F, is used for the thermo-

dynamic functions, with bold-face E, H, S, A, F, and V for the values per mole.

However, /z for the chemical potential or partial free energy per molecule is

used instead of the partial molal free energy F of licwis and Randall. The
relations between these quantities are explained in Appendix AVIII.

The Hamiltonian is distinguished from the heat content by always using

Quantum numbers, and subscript integral indices, are printed in bold-face,

it

The electric and magnetic fields are symbolized by script letters, S, 3C, S, etc.

A, work function, Helmholtz free energy, or free energy at constant volume,

A - F - YiS.

A, work function per mole.

A , one of the three principal moments of inertia of a polyatomic molecule, Chapter 8.

A, area of plates in a condenser, Chapter 15.

Ai, amplitude of the normal coordinate qt, Chapter 11.

a, variously used as a constant parameter of a function or a special value of a coordi-

nate or a function, also as a subscript to indicate a special object, a subsystem,

or a kind of molecule.

a, the force constant of the equation for a quadratic potential, u «

a, equilibrium distance between atoms, Chapter 11.

a, distance between plates in the viscosity apparatus of Chapter 1.

, van der Waals’ constant of dimensions energy times volume, equations (12. 1)

and (12. 23).

B, one of the three principal moments of inertia of a polyatomic molecule, Chapter 8.

B, band spectral constant of dimensions cmr\ B » h/Bir^ICt equation (7. 4), B«

and Bo are defined by equations (7. 24) and (7. 24^ and related in (7. 27).

the Brillouin function, equation (15. 36).

, used as a constant or subscript index analogously to a.

6, used to give the deviation from the quadratic form of a potential, equation (7. 51^).

5, van der Waals’ constant, h » 4vo, equations (12. 1) and (12. 22).

5|, cluster integral of I molecules, defined by equation (13. 5).

C, Sutherland constant, Chapter 1, equation (1. 48).

C, one of the three principal moments of inertia of a polyatomic molecule, Chapter 8.

C, the number of quantum states of cells of a single molecule. Cj is the number of

cells for a molecule in a region j of m space with defined energy cj and energy

interval Ajc. C(€) Ae is the number of cells of energy between € and € + Ae.

C diffeiB from 0 in that the former refers to the quantum states (in g-spaoe)

of the molecules, whereas Q refers to the number of states (in the v-spaoe)

of the complete system, or to a subdivision containing many molecules.

C, the capacity of a condenser. Chapter 15.

473
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Cvt heat capacity at constant volume, {dE/bT)y.
C|r, heat capacity per mole at constant volume.

Cp, heat capacity at constant pressure (dH/dT)p,
Cp, heat capacity per mole at constant pressure.

c, the velocity of light.

Cf subscript indicating the critical point, Chapters 12 to 14, or the Curie point in

Chapter 15.

cv, specific heat at constant volume, per gram.

ce, velocity of propagation of transverse elastic waves. Chapter 11.

Cl, velocity of longitudinal elastic (sound) waves. Chapter 11.

D, a distribution of the system, generally used as a subscript to some property of

the system to indicate the value of the property when the system is in the

fixed distribution D.

D(u), the Debye function, defined by equation (11. 36). :

3), the electric displacement vector, equations (15. 51) and (15. 54). [

Di, Ds, diffusion constants for molecules of kinds 1 and 2, equations (1. 72) and ^

(1. 72').

D*f corrected diffusion constant, equation (1. 75^).

d, the total differential operator, Appendix AI.

d, used in the spectroscopic notation to indicate a one-electron level of orbital angular

momentum f — 2.

d, diameter of molecule, di of molecule 1, etc.. Chapter 1.

dJt, diameter of molecule in Angstrom units.

do, Sutherland diameter for T — equation (1. 48).

Ef energy of a system. Except in Chapter 2, E is reserved for the energy of a macro-

scopic system and e is used for that of a single molecule.

E, energy per mole.

Eq, energy at T — 0, Chapter 16.

C, the electric field vector, equation (15. 52).

Sloe., the local electric field on one molecule.

e, charge of an electron.

e, the base of the natural logarithms.

F, free energy (Lewis and Randall notation), the Gibbs free energy, or the free

energy at constant pressure.

F, free energy per mole.

Fxt the X component of the force. For a mechanical system F* * — (df//d®)y,«,

where V is the potential energy, equation (2. 8). For a thermodynamic

system F* = —{bE/dx)s,y,m, equation (3. 6).

/, the number of degrees of freedom, the minimum number of coordinates necessary

to specify the position of all parts of the system, section 2b. The symbol Sii

is used for the number of degrees of freedom of a molecule (half the number

of dimensions of the /u*'Space). /y is the number of degrees of freedom (in

Y-space) of the complete system, fy = Nfii. fu is usedln Chapter 8 for the

number of vibrational degrees of freedom.

/, spectroscopic notation for an electron level of orbital angular momentum / = 3.

/, /(x), most commonly used to indicate any general function of some argument z.

Some special cases are /2 (v), the distribution function normalized to

unity. Chapter 1; fa * /(uj) defined by equation (12. 8); /(e), some simple

function of € used for e*/® and e®''® in Chapter 16. In general,/^ (x) 4//dx.
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G{z)t a magnitude, such as temperature or average linear momentum, which varies

with the coordinate s in a gas, Chapter 1.

p, the degeneracy, or number of quantum states in a level, g is used instead of C if

the energy difference between levels is appreciable, so that the level is natu-

rally defined.

9, the Land^ g factor, defined by equations (15. 29) and (15. 30).

p, p(r), used as / for any general function, in particular p(€) of Chapter 16 is defined

by equation (16. 27); p'(€) « dp/de, p''(€) * dp'/dc.

Hy heat content, enthalpy.

H, heat content per mole.

3C, magnetic field, Chapter 15.

J^(P/7)t the Hamiltonian, or energy as a function of the momenta p and coordinates g.

h, Planck’s constant of dimensions energy time.

/, electric current. Chapter 16.

7, moment of inertia, I « /xfoi for a diatomic molecule, equation (7. 2). I(() is

defined by equation (7. 56).

7«xi 7yy, moment of inertia of a body about the x axis and product of inertia, respec-

tively, section 8d.

i = \/— 1, the imaginary base.

i, the internal quantum number; i is a symbol for a set of these numbers, if, as is

usual, there are several degrees of freedom. Used as a subscript in Qi or F|,

it indicates the contributions to these functions due to the internal degrees

of freedom.

t, as a subscript to indicate a special molecule in Chapters 12 to 14.

i, used as a subscript to indicate a special coordinate in Chapter 11.

Jp, integrals defined by equation (16. 83) and evaluated in equation (16. 86).

j, quantum number of rotation in a diatomic molecule, equation (7. 1).

j,

quantum number of the total angular momentum in an atom, section 6e.

j, used as a subscript to C, and € to indicate a region in the ^-space, section 5b.

.7, used as a subscript to indicate a particular molecule, Chapters 12 to 14.

Ky the equilibrium constant. is the equilibrium constant expressed in terms

of the numbers of molecules, Kn in terms of the numl>er8 of moles, Kp in

terms of the partial pressures.

ky the Boltzmann constant, k ^ R/Na-

k, the magnitude of the vector k.

k , the vector of components kx, ky, k*.

k„ ky, k„ the three quantum numbers of translation, equation (2. 16).

k, the number of particles contained in an irreducible integral /9k, Chapters 13 and 14.

Ly length of the side of a cubic crystal, Chapter 11.

L{x)y Langevin function, L{x) = coth x — Fig. 15. 3.

ly variously used for a length.

ly mean free path. Chapters 1 and 16.

ly running index to indicate a level.

ly quantum number of the orbital angular momentum in an atom, section 6i.

ly the number of particles in a cluster, Chapters 13 and 14.

My molecular weight, the mass of an atom or molecule in atomic weight units, O = 16.

My the total mass of a system.
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M, the maas of the whole molecule, Chapter 1, as distinguiahed from that of the

atoms.

M, the magnetic polarization, equation (15. 26).

m, the mass of an atom or molecule in grams, mNo Af •

m, quantum number determining the projection of the total angular momentum on a
unique axis, section 7a and Chapter 15.

m|, used in Chapters 13 and 14 to indicate the number of clusters of I molecules each,

mf, the number of molecules of kind t produced in a chemical reaction, equation

(9. 9).

mole, unit of mass or quantity. One mole contains No molecules, and the weight

in grams of a mole is equal to the molecular or formula weight of the molecules.

N, the number of atoms or molecules in the system. Ni, Na, are used to indicate

the number of molecules of kind 1 or a in the system, or the number of mole-

cules in the part 1 or a of the system.

iSTo, Avogadro’s number, Nq 6.023 X 10^^ the number of oxygen atoms in 16

grams of oi^^gen.

Nff the number of atoms or molecules in the region j of the M-spacei section 5b.

iV(€), N(€) Ac is the number of molecules the energy of which lies between € and

C + A€.

NCf), Niv), N(vx,Vy9VM), the numbers of molecules of given velocities, defined in

section Ic.

N(y), number of photons of frequency v, defined analogously to iV(c).

a, the number of moles, N/Not in the system, x is al.so used for this quantity,

indicates the number of moles of compound f,
rig, the number of gram atoms

of element X, in the system. Chapter 9.

n, the number of atoms in a molecule, Chapter 8, nx, the number of atoms of the

elementX in the molecule. Chapter 9.

Ill, ii2, in Chapter 1, the number of molecules per unit volume, of kinds 1 and 2.

n, a general quantum number.

nx, iiy. Ox, quantum numbers of the elastic waves in a crystal. Chapter 11.

fikf power of the configuration integral fit in a term of bg, Chapters 13 and 14.

P, pressure. Unless otherwise indicated the unit is one barye. Subscripts mm. and

atm. respectively indicate that the units of measurement are millimeters

mercury or atmospheres.

Pf, partial pressure in the system due to molecules of the type f, Chapter 9.

Pc, critical pressure. Chapter 14.

P«, pressure of saturated vapor. Chapter 14.

P, probability,

P, total angular momentum. Chapter 2.

P, polarization, equation (15. 7).

P, designation for a spectroscopic term with total orbital angular momentum unity,

pf momentum, subscripts indicate coordinate to which the momentum is conjugated,

p, * mx, definition, equation (2. 1).
'

p, spectroscopic notation for a one-electron level with orbital angular momentum
I - 1.

po, dipole moment. Chapter 15.

p, average projection of the dipole moment along a field, equation (15. 6).

P(9)f 9(^)9 the dipole moment regarded as a function of the internal coordinates g

of the molecule, and of the temperature, respectively.
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Qt th6 partition function of a moleculoy oquaUon (6. 8).

Qk. the factor in Q due to translation, equation (6. 15).

Qi, the factor in Q due to internal degrees of freedom, equation (6. 15).

Qxt contributions (as factors) to Q due to the electric force JJ, or magnetic field

5C, Chapter 15.

Qxt Qct partition function of an atom of element JT, or of a molecule of species f*,

respectively, Chapter 9.

Q, the partition function of a system, equation (10. 14).

Qr, the configuration integral, equation (10. 33).

q, a general coordinate.

9^, normal coordinates.

q * dq/dif a general velocity.

% quantity of electricity, Chapter 15.

B, the gas constant, R « N'ok,

*7^ the vectorial distance from a point or an axis.

r, the magnitude of the polar coordinate.

fo, the equilibrium distance between atoms of a diatomic molecule, Chapter 7. In

Chapter 12, ro has the corresponding interpretation as the equilibrium dis-

tance between two molecules bound by van der Waals’ forces, equations

(12. 20) and (12. 29).

rj/, distance between two molecules i and j, Chapters 12 to 14.

r, a general quantum number, Chapter 2.

S, entropy.

S, entropy per mole.

S, designation for spectroscopic term with total orbital angular momentum sero*

8, spectroscopic notation for a one-electron orbit with angular momentum f » 0.

8, Chapter 16, entropy density, S/V,

8, Chapter 14, used as a subscript to indicate the saturated vapor.

s, spin, section 6i.

Sn, nudear spin magnitude, section 7f.

s, general quantum number, Chapter 2.

T, temperature, Te, critical temperature in Chapter 14 and Curie temperature in

Chapter 15. 7m is discussed in sections 14h and Hi.

Tmf a term of a sum, section 13c.

T, kinetic energy.

kinetic energy as a function of the coordinates and velocities. Chapter 2.

*^(pfq)r kinetic energy as a function of the momenta and coordinates.

t, time.

as a subscript, indicates total.

U, TT(q), Chapter 2, potential energy.

U, U (q)t Chapters 10 to 14, potential energy of the macroscopic system.

U « E/V, energy density of radiation. Chapter 16.

U(v,T), energy density of radiation, equation (16. 13).

tt, a(g), potential energy of one molecule.

tt, potential energy difference of one electron inside and outside of a metal. Chap-

ter 16.

Uif a(r<y), potential energy of the pair of molecules t and j. Chapters 12 to 14.

uo, absolute value of the minimum in the potential between a pair of moleoulea.
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u » Kv/kT for a diatomic molecule, Chapter 7;
- hvm/kT * B/T^ for the maximum Debye frequency Pmt Chapter 11;
«* hf/kT for radiation, Chapter 16.

Ui h»i/kT for the frequency Pi of the ciyetal, Chapter 11.

u, velocity of plates in the viscosity consideration, section li.

ttt vectorial velocity. Chapter 1.

u, magnitu4e of tT.

Us, tiy, Uc, components of iT.

V, volume.

V, volume per mole.

Vc, critical volume per mole.

*0, voltage, Chapter 15.

r, volume per molecule, V/AT, Chapters 12 to 14.

Vat Vet volume per molecule of saturated vapor, and at critical point, respectively.

Vxt volume available to an atom of kind x in the system, section Oe.

roi volume of one molecule, defined by equation (12. 21).

rt vectorial velocity, Chapter 1.

V, magnitude of iT.

Vzt Vy, Vg, components of ~v,

V, quantum number of vibration.

V, average value of v and v^, respectively.

Wt phase volume measured in units of the classical equivalent of Q, definition

equation (2. 38).

W (E) AEt phase volume between E and E -h AE,

Wt work function of a metal, equation (16. 54).

w, a probability.

ii7ir, transition probability between two quantum states s and r.

Xt a thermodynamic function.

X, the Cartesian coordinate of the center of mass.

Xf a symbol for an atom of a particular element.

X, the Cartesian coordinate.

7, as a subscript it refers either to the Cartesian coordinate or toan atom of element X,

y, Cartesian coordinate of the center of mass.

y, Cartesian coordinate.

y - igfi3C/kTt in section 15i.

Zf Cartesian coordinate of the center of mass.

Z, introduced as an undetermined multiplier, equation (13. 14), is later shown to

be the fugacity, measured in units of molecules per unit volume, equation

(13. 50).

Z, number of molecules striking a square centimeter of wall per second. Chapter 1«

o, an arbitrary constant in Chapter 1, later shown to be m/2k2^, equation (1. 27).

a, introduced as an undetermined parameter in equation (5. 11) and later identified

with —t^IkT,

a, a spin function,

a, a direction cosine, section 8d.

a, a coefficient in the equation for the value of a spectroscopic term of a diatomic

molecule, giving the rotation-vibration interaction, definition, equation (7. 24).
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o, coefficient of linear expansion, equation (11. 11 ).

a, polarizability, defined by equation (15. 10).

/I, a qrin function.

/I, an undetermined parameter introduced in*Chapter5 and later identified with l/kT.

jS, a direction cosine, section 8d.

the Bohr magneton, equation (15. 31).

A an interaction integral between two molecules, defined by equation (12. 12 ) and

identical to in Chapters 13 and 14.

ilof limit of the kth root of

irreducible integrals of the interaction between k + 1 particles, defined by equa-

tion (13. 25).

r(z), flow of 0, Chapter 1 .

r, total flow, Ti + Tf.

Ti*, coirected diffusion,

r, heat current in Chapter 10.

7, the symmetry number, 7^ is the symmetiy number of a molecule of kind f*, defined

in section 9d.

7, a direction codne, section 8d.

7, the ratio of the rotational constant to the vibrational wave number of a diatomic

molecule 7^ » equation (7. 29).

7e» the activity coefficient, equation (13. 51).

7-8paoe, defined in section 2d, the phase space of the whole B3rBtem.

A indicates the difference between two values of a variable. AX for a chemical

reaction, with X some thermodynamic property of the system, is the increase

of the value of JIT if the chemical reaction proceeds as written in the accompany-

ing nhftmiPAl equation. The coefficients preceding the formulas indicate the

number of moles consumed or produced in the reaction. AX^ is the change

in the value of JiT if the number of moles of reactants indicated by the equa-

tion are converted from standard conditions of unit pressure or concentration

to the products at unit pressure or concentration,

d, the partial differential coefficient, Appendix AI.

d, an infinitesimal increment.

a, « a/B«, Chapter 7, equation (7. 30).

8i, phase factor in Chapter 11 .

c, the energy per molecule, in distinction to £ the energy per mole, and E the eneigy

of the system. The subscripts k, i, ji or Jm refer respectively to the addi-

tive contribution to the energy due to, and as a function of, the translational

quantum number k, the internal quantum number i, the vibrational num-

het V, or rotational numbers j or jm.

c, average energy per molecule,

c, dielectric constant, defined by equation (15. 8).

r, cosa.

f, a running index to indicate a type of molecule, Chapters 8 and 9.

e, an unknown in a set of equations, the three solutions of which are the principal

moments of inertia, A, B, and C, Chapter 8.

q, coefficient of viscosity, Chapter 1.

$, an coordinate.

0 » h^m/K I>d>ye temperature.
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K, beat conductivity, Chapters 1 and 16.

K, compresnbility, equation (11. 12).

A, the number of isomers possible if the idaiticsl atoms of a polyatomic molecule

were numbered and permuted, secUon 8e.

X, wavelength.

X, a running index for the normal coordinates of a polyatomic molecule.

M, the reduced mass of a diatomic molecule, defined by equation (7. 2).

Ml the chemical potential, definition in section 4h.

MO m(0), the chemical potential at Y » 0, equation (16. 21).

Mo» pennanent magnetic moment per atom, equation (15. 30).

M, the average component of the magnetic moment per atom paraUel to the direction

of the magnetic field.

Mm, the component of /x parallel to the magnetic field for an atom in the quantum
state m.

/i-space, phase space of one molecule, section 2d.

p, frequency, sec.**^.

VO, Einstein frequency of a crystal, Chapter 11.

Pmt maximum Debye frequency, section llg.

Pi, frequency associated with ^e normal coordinate t, Chapter 11.

vibrational coordinate of a diatomic molecule.

ii, (/, displacements from the equilibrium position in a crystal, Chapter 11.

l-iV

n. product symbol, II reads: the product over all (integral) values of i running

from one to N induave, of the following expression. (Appendix AI.)

T, 3.1416.

r, defined by equation (4. 12) and later identified with pressure.

p, a parameter of the dimensions of reciprocal volume, determined by equation (14. 5}

and later identified with l/v«.

l-i^

X)* summation symbol, ^ reads: the sum over all (integral) values of i from one to

N of the following expression. (Appendix AI.)

singlet state for diatomic molecules.

0- » h^/Sr^IkT, defined in equation (7. 4).

V, electrical conductivity, defined in equation (16. 63).

r, defined by equation (4. 11) and later identified with the temperature,

r^, a vector determining the direction of propagation, and the magnitude of the wave
number, of an elastic wave in a crystal, Chapter 11.

Txt ^pt components of r*.

r, the magnitude of 7^.

dr,‘ " dxniyuizi, the dement of configuration volume for molecule'f.

4, an angular coordinate,

an arbitrary function.

^(r), the potential energy between a pair of molecules at the distance r. Chapter 11.

c^ctrical potential, Chapter 16.

X, the magnetic suso^tibility, defined by equation (15. 27).
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« ,
ihe SdhtMinga wave lunotion, 4e&iiiltion ia Mction .

tbe ^vn iunction.

4^, an angolax coordinate, aection 8d.

0, the total number of quantum states available to a system, definition in section 2i.

Qi a solid anf^e.

tt, wave number, r/c, particularly for the characteristic frequency ^ of a diatomic

molecule. The distinction between (i>e and w« is discussed in the beginning

of aection 7d.

», a probability.





PROBLEMS

1. !• Using the method of section le, derive the velocity distribution functions

N i(vx,i)y,Vg) and N2 (vx,VyfVt) of two kinds, 1, and 2, of molecules of masses mi and m2 ,

respectively, in the same volume V. Note: There are three kinds of collisions,

those between two molecules of mass mi, tvro molecules of mass m2 , and those be-

tween a molecule of mass mi and one of mass m2 . The distribution functions must

be such that equilibrium exists with respect to all three kinds of collisions.

Show how the results of this calculation lead to a proof of the statement that the

average kinetic energy of the molecules of a perfect gas is a function of the tem-

perature alone.

Show how this also leads to Avogadro’s law: equal volumes of different gases at

the same temperature and pressure contain the same number of molecules.

1. 2. In an infinite space the density of molecules of a perfect gas at some point

is assumed to be known, and it is known that the velocity distribution at this point

is Maxwellian. There is also known to be a gravitational force of g dynes per gram

acting uniformly in the negative z direction on each molecule. Assuming all the

molecules to have the same mass, and assuming tliat there are no collisions, calculate

both density and velocity distribution as a function of position in the space such

that there is a steady state, that is, such that as many molecules enter as leave each

element of positional arid velocity space.

Express the result in one function, i\^(a:,y,z,Vx,iv,v«) such that A dx

dy^** dvg gives the numbers of molecules having coordinates lying betw'een x

and X + dx, etc., and velocities between Vx and Vx + dvx, etc.

Note what the potential energy of a molecule is at the height 2 .

1. 8. Consider a column of gas in the atmosphere subject to the constant gravita-

tional force g per gram. Using the effect of the weight of the gas in changing the

pressure with height, and using the perfect gas law, derive an equation giving the

density of molecules, at constant temperature, as a function of the height. Compare

this result with that of the previous problem.

1. 4. Calculate the viscosity coefficient of a gas if the pressure is so low that the

mean free path I is much larger than the distance between the plates considered in

section li. Assume that there is no slipping at the plates.

1. 8* Calculate the heat conductivity of a gas at so low a pressure that the mean

free path is much greater than the distance between the plates (section Ij ). Assume

that the molecules leave each plate in temperature equilibrium with that plate.

8. 1. Draw, in the two-dimensional phase space of an oscillator, the dassieal

paths corresponding to the quantum-mechanically allowed energies. Show that

these lines separate the phase space into ceils of volume Show in detail for the

classical oscillator that the Liouville theorem holds.

2. 8. Draw, in the two-dimensional phase space of a rotator in a plane, the lines

of constant energy which separate the phase q>ace into cells of volume h, starting

with the line of sero energy. Calculate the energy of these states. Compare the

results with equation (2. 25) for a rotator in three-dimensional space.

Show in detail that the Liouville theorem holds for the classical rotator in a plane.

483
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6. 1. Assume the Boltzmann distribution law for the relative numbers of mole-
cules in two non-degenerate quantum states, and using this alone derive the expres-

sion for the number of molecules in one internal quantum state in terms of the total

number of molecules.

From this result derive the expression for the total internal energy, E|, of the gas.

By thermodynamic transformations derive from this the expressions for the other

thermodynamic functions, Ci, Si, Ai, assuming that the internal entropy at 0’’K is

Nk In got with go the number of internal states of zero energy.

6.

8. Calculate the internal contribution to the heat capacity, per gram atom,
of fluorine atoms between and 3000^K (at 100^ intervals to 1000**K and 250**

intervals from 1000°K to 3000*'K). Plot the results against T, See page 142 for

data.

6. 8. For the monatomic gas considered on page 143 derive an equation relating

ffOt 0u and u at the temperature for which the heat capacity, Ci, is a maximum.
Solve this equation for T if gi is extremely large. Plot Cf and £{ in the neighborhood

of this temperature for gi = 10®, go = 10®; for gi - 10^®, go - 10®; and for

gi
— 10^®, go — 10®. Change the value of c in each case so that the maxima in the

C| curves occur at about the same temperature in each case.

Do these plots suggest any explanation of the behavior of a crystal in melting

sharply at one temperature to a liquid?

7. 1. Calculate the thermodynamic functions F, S, H, and Cp for HCl at lOO'^K,

200®K, 273.1**K.

7. 2. Calculate the thermodynamic functions F, S, H, and Cp for Iscum) 300°K,

600®K, and 900°K.

8. 1. In the linear molecule C02f assume that there are no forces between the two

oxygen atoms, and calculate the ratio of the two higher frequencies. Compare with

the values at the bottom of page 186.

8. 2. What are the symmetry numbers of the following molecules: CII4, CH»C1,

CH2CI2, CIICI3, CCI4, H2CO, (CH2)3 (cyclopropane), CO2, (CH2)6 (cyclohexane,

a, assuming the carbon atoms to lie in one plane; and assuming the tetrahedral

angle to be preserved in which case there are two forms, 6, the “ bathtub form

with four carbon atoms in one plane, c, the ** armchair form with alternate carbon

atoms in differing parallel planes).

9. 1. Prove generally, by the use of the classical partition function, that for

a classical system, if the potential energy of the molecule is independent of its

isotope composition, then no separation of isotopes can be obtained in a gas-

eous chemical reaction, even if the effect of the differing masses of the isotopes is

considered.

9 . 2 . (a) For a reaction such as

Ha-f DBr^DQ+HBr

show by the use of the quantum-mechanical partition function that at sufficiently

high temperatures the equilibrium constant is unity (by expanding the partition

functions in power series of the inverse temperature).

(5) Calculate the power series development in inverse powers of the temperature

for the equilibrium constant of such a reaction.

(c) Calculate the numerical value for the equilibrium constant of the above re-

action at 300®K. (The power series expansion will not be applicable at this tem-

perature.)
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10, 1. (o) If P(pi,p2i
• •

•
I PMi, • •

•
, g/) dpi--- dq/ is the (classical) prob-

ability that the system is in the element of phase space between pi and pi + dpi,

etc., show that

-kfj fP\^Pdvi - dq,.

(6) If Pfi is the (quantum-mechanical) probability that the system is in the quan-
tum state n, show that

S - -jtLP.lnP,.
a

10. 2. (a) If the free volume per atom V of a classical system is defined by the

equation

fS- s-
in which V is the average potential energy of the system and V is the potential

energy as a function of the coordinates, prove tliat

S , [„ ,
/2jrm/iir\3.V,/2

Ni\
+ In r""’}

•

(6) In what sense does it seem to be justified to refer to the quantity V' defined

above as a free volume " per atom of the system?

11. 1* Plot heat capacity per gram atom against temperature for a monatomic

(Debye) regular crystal, the atoms of which have two internal non-degenerate

quantum states of energies zero and c, with both c » Arm/20 and with c ~ 2hvm’

Assume that the internal quantum states do not interact witli the lattice vibrations.

14. 1. Assuming that at the critical temperature and density only the terms for

k equal to 1 and 2 are appreciable in the virial development, calculate the relation

between and ^2 whi<!h would determine the critical temperature. Calculate the

value of Pu/kT at the critical point on this assumption.

14. 2. For a system containing A" identical monatomic molecules in a volume V,

distribution functions Fnfacj, 1/ 1 ,21 ,12 ,
• *

• ,2n) of the coordinates of n specified mole-

cules may be defined by the statement that

:j^Fn(ri, *•',««) dx\---dzn

is the probability that simultaneously molecule 1 will be in a volume element of

volume dxi dy\ dz\ at the place x\y\Zi and < * > molecule n in the element of volume

dXn dyn dZn at XnVnZn-

Derive the formal expression for Fn which involves integration in the configuration

space, and the potential energy of the whole system.

Derive the equation

_ 0,«» + i.v.n _EI_ . , rr
\2mkTj (« + l)l Q.W.K.T) L ©»iJJ

f Fn(Xu • • * ,^n) Il/Oi dri-- -dti-- - drn,l

in which /o» = 1, and aoi is the mutual potential of the molecule i and

the molecule 0 which is located, for convenience, at the origin of the coordinate
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space. It is necessary to assume that the total potential energy of the system is the

sum of that between pairs of molecules as was done throughout Chapters 13 and 14.

If strong repulsive forces are assumed between molecules at short distances of

approach can one predict a priori whether the above series will converge even in a
liquid or crystal?

16.1. Cidculate the ratio of the heat leak in a Dewar flask due to radiation to

that due to gas conduction. Assume the gas to be monatomic argon, for convenience,

and that it is at a pressure of 10*^ mm. mercury. (Mean free path is greater than

the distance between walls; see problem 1.5.) Calculate the ratio when the outer

walls of the Dewar are at SOO^'K and the inner vessel at 80°K (liquid air), when the

inner vessel is at 200**K, and when the inner vessel is at 373°K. Assume first that

the accommodation coefficient for the atoms on the walls is unity, and that the walls

are black-body radiators. How is the heat loss due to radiation altered if the inner

wall of the Dewar is silvered so that it becomes a 90 per cent reflector? if only the

outer wall is silvered? if both walls are silvered?

16.2. How many watts energy are required to keep a black cube with a 1-cm.

edge, in vacuum, at 500**K, at SOO'^K, at lOOO^K, at 2000°K? Assume that the

surrounding walls are also black and are at 300*’K.

16.8. The heat generated at any place in the metal is equal to the work done on
the electrons minus the excess of heat carried away, or

Calculate the heat generated at a region in the metal, and identify the various

terms with the Joule heat, the heat brought into the region by heat conduction, and

the heat due to the Thomson effect.

16.4. (a) Derive general equations for the thermodynamic functions of an Einstein-

Bose gas with internal degrees of freedom.

(6) If only two non-degenerate quantum states of energies zero and t, respectively,

are appreciably excited, derive the equations for the condensation temperature as a

function of t. What is the ratio of the condensation temperature for such a gas as

t approaches zero to that of a gas with only one non-degenerate state of zero energy?

16.6. Show that a two-dimensional perfect Einstein-Bose gas does not condense.
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References are to pages; bold face type indicates definitions or

more important references.

Alkali atom, 142

Ammonia molecule, 199

Angular momentum, see Momenta
Antisymmetric eigenfunctions, 64

, 65,

123, 176-176
, 196, 363, 374

Argon, boiling point, 122

heat conductivity, 27

viscosity, 27

Atom, 52

Atomic spectral terms, 140-141

Benzene molecule, 185

Binomial coefficient, 436

Black-body radiation, 365-374

definition, 365

distribution function, 366, 370

pressure, 373

quantum states, 368

thermodynamic functions, 372-374

Bohr magneton, 344

Boltzmann system, definition, 66-67

perfect gas, limit of treatment as a,

120-122

perfect monatomic gas treated as a,

114-122

Bose-Einstein system, 63-67

Brillouin function, 346-348

Calculus, notation of, 427-430

Canonical ensemble, 219

Carbon dioxide molecule, 186

Cell method for liquid partition func-

tions, 319-326

Cells, as synonym for quantum states,

42, 53, 63,
no, 123, 201, 221,

363, 401

number of, 54-55

number of translational, 54-66
,
110,

375, 416

Chemical equilibrium constant, 207

Chemical equilibrium in gases, 203-217

Chemical estimation, 215

Chemical interpretation, 213

Chemical reactions involving isotopes,

210

Chemical potential (see also Thermo-

dynamic functions), 104-108,

43^-440

in a gas, 126

in a gaseous mixture, 203

in a reaction at equilibrium, 205-207

Clausius-Mossotti formula, 339

Cluster integrals, 278-288,
297-299,

455-459

Coefficients, binomial, 436

maltinomial, 436

ofterms in the cluster integrals, 455-456

Collisions, in a perfect gas, 18-22

of electrons in metals, 397-407

Combination of independent systems,

49-53, 63-67

Combinatory problems, 435-438

Complex numbers, 43, 46

Condensation, from an imperfect gas,

295-317

in an Einstein-Bose system, 418-426

van der WaaJs', 272-274

Configuration integral, 229-230

evaluation, 277-284

Configuration space, 133, 215-217, 231,

277

Conversion table for energy units, 471

Coordinates, 35-36

and configuration space, 229-230

and phase space, 39

Eulerian angles, 192

normal, of crystals, 238, 248

of polyatomic molecules, 183

polar, 35, 37

Corrections for high temperatures in

diatomic gas functions, 183-

166, 452-453
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Critical point, 30S-314
in a van der WaaW gas, 270

Crystals, 237-261

classical treatment, 240-242

Debye function, 251

Debye treatment, 249-255

general thermodynamic functions,

243-245

normal coordinates, 238, 248

one-dimensional model, 246-248

stress and strain, 258-261

Debye formula, 251

Definite integrals, 430

Degeneracy, 44

Degenerate gas, see Einstein-Bosc gas;

Fermi-Dirac gas

Degrees of freedom, 36

number of, in crystals, 237, 251

in polyatomic molecules, 181

Diatomic molecules, 61-62

constants (table), 468-469

gas composed of, 149-177

classical thermodynamic functions,

171

classical treatment, 167-171

elements, 172-178

high-temperature corrections, 162-

166

nuclear spin, 174-178

oscillator contributions, 157-160,

444

tables, 44,5-447

rotator contributions, 151-157, 448-

449

tables, 450-452

symmetrical molecule, 172-178

thermodynamic functions, 443-453

with general molecules, 160-171

quantum levels, 61-62
,
149

quantum levels of general molecule,

160, 452

Dielectric constant, 331-340, 361

Diffusion in gases, 27-30

Dipoles, 327-330

non-rigid, 335-338

Distribution, black-body radiation, 367,

371

concept, 78-80

exam^e, 74-77, 89-90

Distribution, Gaussian, 76-77

Maxwell IMtzmann, 10-17, 119-120

number of quantum states, 88

of energy among atoms, 110-114

of molecules, with respect to clusters

in space, 283-284

with respect to internal states, 132-

134

with respect to kinetic eneigy, 10-

17
,
119-120

with respect to space, 74-77, 325-

326

with respect to velocity, 10-17, 119-

120

probability of a, 79

the most probable, 80-81, 88

Eigenfunctions (see also Symmetric

eigenfunctions; Antisymmetric

eigenfunctions^ 43-46

and conhguration integral, 231

of a mass point in held free space, 46

of electrons in metals, 389-390

Eigenvalues, see Quantum states

Einstein heat capacity equation for a

crystal, 245

Einstein-Bose gas, 63-67, 111-113, 416-

426

condensation, 418

integrals, 419

thermodynamic functions, 421

Einstein-Bose systems, 63-67

Elastic constants, 259-261

Electric displacement vector, 357ff

Electric field, 327fT

thermodynamic functions for systems

in an, 356-362

Electrical conductivity of metals, 399,

407^409

Electron gas in metals (see also Fermi-

Dirac gas), 364, 367-390

Energy (see also Thermodynamic func-

tions), 1

arbitraiy zero, 134-135

conversion of units (table), 471

fluctuations in a system of fixed tem-

perature, 227

kinetic, 1, 5, 9, 36, 147

levels, see Quantum states

potential, 1, 38, 145, 239-231
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Energy, poteuWal, oi a eryBla\,

of a diatoioic molecule, 167

zero point, of a crystal, 240ff

of a Fermi-Dirac gas, 374r^77
of an oscillator, 48, 150

Entartung (see aho Einstein-Bose gas;

Fermi-Dirac gas), 44, 364

Enthalpy, see Heat content

Entropy (see also Thermodynamic func-

tions), 86, 92-98, 104-107, 4;i8-

440

and uncertainty of energy, 100-102

ofisotope mixing, 138-140, 209-213,443

Equilibrium (see also Distribution), 81

chemical, see Chemical equilibrium

constant, 207

distribution, 80-81

position of atoms, in crystals, 237

diatomic molecules, 149

table of, 468-469

polyatomic molecules, 179-181, 195-

199

thermodynamic criteria, 104-108

Ergodic systems, 56, 62, 83

Error function (Gaussian), 76

Ethane molecule, 148, 189, 197

Eulerian angles, 192

Euler-Maclaurin summation formula,

152, 431-432

Factorial, 432-433

Fermi energy, 375

Fermi-Dirac gas, 63-67, 111-114, 374-414

distribution function, 378, 381

integrals, 378-385

zero point energy, 375-377

zero point pressure, 377-378

Fermi-Dirac systems, 63-67

Ferromagnetism, 348-352

First law of thermodynamics, 86

Forces, 38

thermodynamic, 70-74, 96-97

Free energy (see also Thermodynamic

functions), 105-108, 438-440

Gamma space, 40, 68

Gases (see also Perfect gas; Imperfect

gases; Diatomic molecules;

Polyatomic moleeules, etc.),

imperfect, 262-294

\ Gases, mixtures, 201-203

perfect, 1-30, 109-217

Gaussian distribution, 76

Gibbs’ phase integral (see also Partition

function), 223, 229, 234

Gibbs’ statistics, 21817

Halogen atom, 142

Hamilton function, 38

Harmonic oscillator, see Oscillator

Harmonic vibrations in crystals, 237-240

Heat capacity (see also Thermodynamic
functions), 438-440

Heat conductivity, in gases, 26-27

in metals, 397-399, 409-411

Heat content (see also Thermodynamic
functions), 438-440

Heisenberg uncertainty principle, 41-42,

62, 101

Helium, 121

heat conductivity, 27

liquid, 414-426

viscosity, 27

Helmholtz free energy (see also Thermo-

dynamic functions), 105-108

Hindered rotation, 148, 189, 197-198

Hydrochloric acid molecule, 151, 469

Hydrogen molecule, 122, 151, 157, 166,

177-178, 468

Identical particles, 63-67

Imaginary numbers, 43

Imperfect gases, 262-294

condensation, 295-317

critical point, 308-314

general theory, 277-294

potential energy, 277

thermodynamic functions, 291-293

van der Waals’ equation, 262-276

Inhibitions, 81-85

Iodine molecule, 151, 157, 166, 469

Irreducible integrals, 285ff

temperature dependence, 305-308

Isotope mixing, 138-140, 209-213

Kinetic energy, 1, 36-38

Kirchhoff’s law, ^7

Land4 ^-factor, 343-345

Langevin function, 330

figure, 347
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Lattice, see Crystals

Law of corresponding states, 269-272

Liouville theorem,

in quantum mechanics, 56-58

Liquid, cell method of treatment, 319-

326

condensation to a, 295-317

Liquid helium II, 414-426

Lorentz-Lorenz force, 338

Magnetic cooling, 352-356

Magnetic fields, 327ff

Magnetic susceptibility, 340-348

Magneton, 344

Maximum frequency of crystal oscil-

lators, 251

Maximum term in configuration integral

development, 283-284

Maxwell-Boltzmann collision equation,

40W07
Maxwell-Boltzmann distribution law,

10-17
,
119-120

Mean free path, of electrons in metals,

397, 400, 405

of molecules in a perfect gas, 18-22

table, 21

Meniscus, temperature of disappearance

of, 310-314

Method of undetermined multipliers,

113, 201, 222, 283, 297, 370,

433-436

Mixture of gases, 201-203

Molecules, ammonia, 199

benzene, 185

carbon dioxide, 186

diatomic (see also Diatomic molecules),

62

ethane, 148, 189, 197-198

hydrochloric acid, 151, 469

hydrogen, 122, 151, 157, 166, 177-178,

468

nitrogen, 151, 468

oxygen, 151, 468

polyatomic (see also Polyatomic mole-

cules), 179-199

Momenta (see also Phase space), 86fi, 58

and uncertainty principle, 41-42

angular, 37, 48, 145, 149, 193

conjugate, 36

linear, 4, 9, 36, 46

Moments of inertia, 37, 49

of diatomic molecules, 149, 167

table, 468-469

of polyatomic molecules, 189, 192, 454
Mu space, 40, 110, 124

iST-dimensional sphere, volume, 116, 243,

433

Neon, boiling point, 122

heat conductivity, 27

viscosity, 27

Nitrogen molecule, 151, 468
Normal coordinates, of crystals, 238, 248

of polyatomic molecules, 183, 185

Nuclear spin, 52, 136-138

in diatomic molecules, 52, 174-178

in isotope equilibrium, 213

in polyatomic molecules, 196

Number, of cells of translation, 64-66,

110, 375, 416

of degrees of freedom, 36 , 181, 237, 251

of molecules hitting a wall, 17-18

with given velocity, 5-8

of quantum states of a system, 54ff,

58, 86ff

of terms in cluster integrab, 455-459

of ways of putting balls in boxes, 435-

438

Optically active isomers, 180

Ortho-hydrogen, 177-178

Oscillator, 47-48

and electric moment, 335-338

deviations from harmonic behavior,

160-161, 452-453, 467

in crystals, 237fi, 258

in diatomic molecules, 149, 157-160,

444

mechanics, 47-48

thermodynamic functions, 157-159,

444

table, 445-447

Oxygen molecule, 151, 468

Para-hydrogen, 177-178

Paramagnetism, 340-342

in quantum mechanics, 342-348

Partition function (see also Thermody-

namic functions), internal, of a

molecule, 128
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Partition function, of a molecule, 123-
129

of a system, 229-223, 230
separation as a product, 127-128

Perfect gas, 109-199

degenerate (see (duo Einstein-Bose gas;

Fermi-Dirac gas), 363-426
diatomic (see oho Diatomic molecule^

149-178

diffusion, 27-30

equation of state, 5, 9, 117-119, 130
general thermodynamic equations,

129-132

heat conduction, 26-27

mean free path, 18- 22

monatomic, 109-122

number of molecules hitting a wall, 17-

18

polyatomic (sec also Polyatomic mole-

cules), 179-199

pressure, 5, 8, 117-119, 130

simplified model, 3-5

symmetry number, 172-178, 196-199

thermodynamic functions, 129-131,

440-463

viscosity, 22-26

Phase changes, 274-276, 317-319

condensation, 296-317

Phase space, 38^0, 69, 228, 232, 242

and symmetry number, 196-199

examples, 40, 59

integral, see Gibbs’ phase integr.-d

Liouvillc theorem, 58-63

probability in, 62

quantum states in, 42, 44, 69

uncertainty principle, 41-42

Physical constants, table, 470

Planck distribution law, 370

Polarization, electrical, 331-335

Polyatomic molecules, 179-199

hindered rotation, 148, 189, 197-1?>9

isomers, 180

number of degrees of freedom, 181

oscillators in, 183-191

potential minima, ISO

rotation, 191-194

symmetry number, 195-199

thermodynamic functions, 194, 454

Pressure, 72-73, 92, 95-97 . 235

Einstein-Bose gas, 426

Pressure, Fermi-Dirac gas, 386

imperfect gas, 262, 291, 301
mechanical origin, 4, 73
perfect gas, 4, 8, 117-119, 130
radiation pressure, 373
van der Waals* equation, 262
virial equation, 291

zero point pressure, 377-378

Probability, see Distribution

equal, of equal volumes in phase space,

58-63

ei|ual. of quantum states, 53-58

of a configuration, 133, 230-231

of a molecule being in an internal

state, 132-134

of cards after shuffling, 88-90

of a dipole orientation, 328-329

of distribution of indepcmlent particles

in space, 74-77

of energy of a molecule, 123

of kinetic cmergy of a molecule, Sff, 14,

112-114, 120

of firientation of magnetic moments,

340, 346

Quantum states, 42-45

density of, in phase spare, 42, 44, 62,

69

equal probability, 53-58

in magnetic fields, 345

number of, available to a system, 54,

6S, 86fT

for a distribution, 79

translational, 64-66, 110, 375, 416

of a crystal, 329

of a diatomic molecule, 52, 149, 180,

443, 452

of a particle in ficltl free space, 47

of a rotator, 48-49

of a symmetrical top, 49

of an oscillator, 48

of atoms, 52- 53. 140-141

of Einstein-Bdse systems, 65, 66, 111

of Fermi-Dirac systems, 65, 66, 111

of some simple systems, 45-49

Radiation field (see also Black-body

radiation), 365-374

thermodynamic functions, 372-374

Rayleigh’s law, 370
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Refractive index, 333-335

Reversibility, principle of complete, 11,

66

Richardson effect, 399-395

Root mean square velocity, 16

.Rotation, of diatomic molecules (see aUo

Rotator), 52, 151-157

interaction with vibration, 160-161

of polyatomic molecules, 191-194

contributions to thermodynamic

functions, 194, 454

Hamiltonian, 193

hindered, 148, 189, 197-198

moments of inertia, 192, 454

Rotator, 48

even and odd states, 150, 154-157

in diatomic molecules, 61, 151-157

partition function, 153

thermodynamic functions, 154-155,

448-449

table, 450-452

Russell-Saunders notation, 140>141

Saturated vapor, 295-317

thermodynamic functions, 314-317

volume per molecule, 303-305

Schrodinger equation, 43

Second law of thermodynamics, 86(T,

105-108, 438-440

validity, 98-100

Specific heat, aee Heat capacity

Spectroscopic notation, 149-141

Spherical coordinates, 35

Stationary state, 24, 30, 301

Stirling approximation, 432-433

Strain and stress in crystals, 258-261

Summation formula, 152, 431-432

Superconductivity, 388, 400

Susceptibility, magnetic, 340-348

Symmetric eigenfunctions, 64, 65, 123,

176-176, 196, 363, 368, 416

Symmetrical top, 49, 192

Symmetry number, in diatomic mole-

cules, 172-178

in polyatomic molecules, 195-199

Systems, 1, 31; 33, 45, 49

at constant energy, 86-100

at constant temperature, 218-236

combination of independent, 49-53,

63-67

Systems, composed of dependent par-

ticles, 218-236

composed of independent particles,

123ff

eigenfunctions, 64

Einstein-Bose {see <dso Einstein-Bose

gas), 65

Fermi-Dirac (see also Fermi-Dirao

gas), 65

partition function, 222-223

simple examples, 45-49

thermodynamic functions, 95-97, 936-

286

Temperature, 5, 92, 96

Theory of functions of a complex vari-

able, 459-467

Thermionic emission, 390-395

Thermod3mamic forces, 79-74, 96-97

Thermodynamic functions, 106-108,

438-440

of an oscillator, 158r-159, 444

table, 445-447

of a rotator, 154-155, 448-449

table, 450-452

of crystals, 249-245, 251-255

of diatomic molecules, 154-155, 158-

159, 163-166, 443-468

table, 4434152

of general gases, 130-132

of imperfect gases, 291-293

of monatomic gases, 143

of polyatomic gases, 194, 454

of saturated vapor, 314-317

of systems in electric fields, 356-361

of systems of dependent molecules,

235-236

Thermodynamic state, 69

Thermoelectric potential, 412-414

figure, 414

Third law of thermodynamics, 103-104

Transition probabilities, 56-58

TranslatioLial quantum .states, 47, 64r-66

number of, in an energy range, 66, 110,

375, 416

Uncertainty in energy, 109-102

Uncertainty prinei|de, 41-42, 62, 101
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Undetermined multipliers, method of,

113, 201, 222, 283, 297, 370,

433-436

Van der Waals’ gas, 262-276

Velocity, averages in a gas, 14

Vibration, see Oscillation

Virial equation, 288ff

Viscosity of a gas, 22-26

Volume, of an V-dimensional sphere, 433

per molecule of saturated vapor, 303-

305

V7ave functions, see also Antisymmetric

eigenfunctions; Symmetric
eigenfunctions

and configuration integral, 231

of a point in field free space, 46

of electrons in metals, 389-390

Wien's distribution law, 371

Work function, see also Thermodynamic
functions

of a metal, 392, 3956

thermodynamic, 105-108, 438-440






